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Abstract 

 

EXAMINING SPRING AND AUTUMN PHENOLOGY 
IN A TEMPERATE DECIDUOUS URBAN WOODLOT 

 

 

by 

Rong Yu 

 
The University of Wisconsin - Milwaukee, 2013 

Under the Supervision of Distinguished Professor Mark D. Schwartz 
 

 

This dissertation is an intensive phenological study in a temperate deciduous 

urban woodlot over six consecutive years (2007-2012). It explores three important topics 

related to spring and autumn phenology, as well as ground and remote sensing phenology. 

First, it examines key climatic factors influencing spring and autumn phenology by 

conducting phenological observations four days a week and recording daily microclimate 

measurements. Second, it investigates the differences in phenological responses between 

an urban woodlot and a rural forest by employing comparative basswood phenological 

data. Finally, it bridges ground visual phenology and remote sensing derived 

phenological changes by using the Normalized Difference Vegetation Index (NDVI) and 

Enhanced Vegetation Index (EVI) derived from the Moderate Resolution Imaging 

Spectro-radiometer (MODIS).  
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The primary outcomes are as follows: 1) empirical spatial regression models for 

two dominant tree species - basswood and white ash - have been built and analyzed to 

detect spatial patterns and possible causes of phenological change; the results show that 

local urban settings significantly affect phenology; 2) empirical phenological progression 

models have been built for each species and the community as a whole to examine how 

phenology develops in spring and autumn;  the results indicate that the critical factor 

influencing spring phenology is AGDD (accumulated growing degree-days) and for 

autumn phenology, ACDD (accumulated chilling degree-days) and day length; and 3) 

satellite derived phenological changes have been compared with ground visual 

community phenology in both spring and autumn seasons, and the results confirm that 

both NDVI and EVI  depict vegetation dynamics well and therefore have corresponding 

phenological meanings. 
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1. Introduction 

Phenology is the study of the annual biological cycles of plants and animals, and 

their relationships to climate and other environmental factors (Zhu & Wan, 1973; Lieth, 

1974). During the past two decades, phenological research, supported by developments in 

computer science, remote sensing techniques, and Geographic Information Science, has 

played an increasingly crucial role in the study of global environmental change (Schwartz, 

2003). Results from phenological studies around the world clearly demonstrate the 

impacts of changing temperature on wildlife (Thomas et al., 2004; Thuiller et al., 2008) 

and the feedback between shifting phenology and climate change (Penuelas et al., 2009; 

Walther, 2010). The 4th Assessment Report of the Intergovernmental Panel on Climate 

Change (IPCC) states that  “Phenology – the timing of seasonal activities of animals and 

plants - is perhaps the simplest process in which to track changes in the ecology of 

species in response to climate change” (Parry, 2007). Therefore, phenology is considered 

to be a biospheric global change indicator (Schwartz, 2003). 

“Phenophases” and “phenological events” are the two key terms in phenological 

studies, but their definitions vary. In this study of spring and autumn tree phenology, the 

definitions of phenophases and phenological events follow those of the USA National 

Phenology Network (USA-NPN). Phenophases, also known as phenological phases, are 

annually cyclical biological phases of plants and animals that can be described by a start 

and end date, such as the leafing out of a willow tree, the blossoming of a cherry tree, the 

leaves coloring on an oak tree, or the migration of the American robin. 

(http://www.usanpn.org/glossary/term/16). In contrast, phenological events are precise 

start and end points of phenophases, such as the first leafing of a willow tree, the first 
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blossoming of a cherry tree, the last leaf fall of an oak tree, or the first appearance of an 

American robin (http://www.usanpn.org/glossary/term/15).  

Phenology has been particularly associated with agricultural activities since 

ancient times, dating as far back as 3000 years ago (Zhu & Wan, 1973; Chuine et al., 

2004). Even today in some remote villages of southwest China, farmers still follow the 

tradition of planting rice when swallows first return to the village to build nests. Modern 

phenological observations and research can be traced back to Carl von Linne, who first 

organized a phenological observation network with 18 stations in Sweden from 1750 to 

1752 (Schnelle & Yang, 1965). Subsequently, many systematic phenological observation 

networks, mostly located at agricultural-meteorological observation stations, were 

gradually established in major European countries, the USA, Canada, China, Japan, and 

others (Schnelle & Yang, 1965). These networks mainly served agriculture and forestry 

purposes until the 1990s.  

Scientific studies have consistently shown that warmer temperatures significantly 

influence land surface physical processes and biogeochemical cycles, and consequently 

impact ecosystems and human society (McCarty, 2001; Penuelas & Filella, 2001; 

Scheffer et al., 2001; Walther et al., 2002; Hughes et al., 2003; Parmesan & Yohe, 2003; 

Root et al., 2003; Thomas et al., 2004; Root et al., 2005; Thuiller et al., 2005; Visser & 

Both, 2005; Parmesan, 2006; Intergovernmental Panel on Climate Change. Working 

Group I., 2007; Rosenzweig et al., 2008; Tylianakis et al., 2008; Visser, 2008; Witze, 

2008; Wood, 2008; Loarie et al., 2009; Walther, 2010; Donnelly et al., 2011).  
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From 1906 to 2005, global mean surface temperature rose by 0.74°C (Bernstein, 

2008); the years from 2000 to 2009 were the warmest years in the instrumental 

temperature record (Zhao & Running, 2010) and 2010 reached a new global mean 

temperature record (Hansen et al., 2010). As a result, global warming and related fields 

have been of growing interest to scientists, particularly since the 1990s. In addition, the 

media, the general public, and governments have paid increasing attention to global 

warming and its potential impacts on ecosystems and human society.  

This recent interest in phenology has been driven by climate warming, as 

phenology is one of the most important indicators of ambient temperature change (Sparks 

& Menzel, 2002). Given the strong association between climate and phenology, many 

phenological studies have focused on the impact of a range of climate drivers on changes 

in the growing season from the local to global scale (Reed et al., 1994; Chmielewski & 

Rotzer, 2001; Norby et al., 2003; Schwartz, 2003; Zhang et al., 2004a; Menzel et al., 

2005). In different regions and continents an earlier onset of spring and a longer growing 

season has been confirmed in recent decades (Keeling et al., 1996; Myneni et al., 1997; 

Menzel & Fabian, 1999; Chuine et al., 2000; Piao et al., 2006; Christidis et al., 2007; 

Piao et al., 2007; Miller-Rushing & Primack, 2008; Rich et al., 2008). Strong 

relationships have also been detected between increasing air temperature and advanced 

spring phenology (Sparks & Carey, 1995; Forchhammer et al., 1998; Schwartz, 1998; 

Menzel & Fabian, 1999; Schwartz & Reed, 1999; Saxe et al., 2001; Fitter & Fitter, 2002; 

Badeck et al., 2004; Walther, 2004; Zhang et al., 2004b; Linderholm, 2006; Menzel et al., 

2006; Schwartz et al., 2006). Furthermore, it has also been determined that phenological 

responses to climate change vary widely among species (Parmesan, 2007). As a 
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consequence, shifts in phenology could introduce mismatches in the timing between 

interdependent species (such as plants and pollinators, predators and prey) or between 

species and their abiotic environment (Stenseth & Mysterud, 2002; Visser & Both, 2005; 

Donnelly et al., 2011). Phenological mismatches could cause ecological problems in both 

terrestrial and aquatic ecosystems by influencing ecological networks (Edwards & 

Richardson, 2004; Donnelly et al., 2011). However, these mismatches in timing may not 

always be negative as opportunities for presently weak interactions may be strengthened 

or new relationships formed. Furthermore, Chuine and Beaubien (2001) confirm that 

phenology can serve as a key determining factor in a process-based model to predict tree 

species distributions. Therefore, the analysis and forecast of species to biome level 

phenology, especially the determination of start and end dates of the growing season, are 

essential for further understanding the changes and feedbacks within ecosystems under 

global warming. 

This dissertation is centered on tree phenology, which is a key indicator of 

variations on individual species, plant communities, and ecosystems in response to 

climate and environmental changes (Schwartz, 1999). This study focuses on intensive 

spring and autumn phenological observations and analysis of an urban woodlot on the 

University of Wisconsin-Milwaukee campus in Milwaukee, WI. Combining ground 

visual phenological observation data with detailed climate measurements and remote 

sensing images, the study begins to build a spatially intensive phenological observation 

time-series in an urban area. The study site is positioned to detect phenological responses 

to the meteorological variation at the local scale and to refine the understanding of in situ 

and remote sensing data in an urban setting. By comparing the results from this research 
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project with phenological measurements gathered in a forested area in northern 

Wisconsin, it is expected that differential phenological patterns will be revealed in 

response to site location, meteorological variation, and landscape context (urban woods 

versus rural forest). 

One of the novel aspects of this study is that comparable intensive phenological 

observation campaigns do not appear to have been conducted in an urban setting. A few 

studies have examined the differences in phenological response between urban and rural 

areas from remote sensing to confirm that higher temperatures will lead to earlier 

phenology (White et al., 2002; Zhang et al., 2004c). Urban areas are where most human 

activity occurs and are certainly among the most disturbed parts of the Earth’s surface. 

The urban heat island effect raises the air temperature above that of the rural areas, which 

can have an indirect impact on humans living in urban areas by altering the timing of 

phenological events. For example, under warm conditions the timing of pollen release is 

earlier, which will have an effect on allergy sufferers (Chuine & Belmonte, 2004). 

Furthermore, it is in urban areas that anthropogenic climate change has the most profound 

influence on the timing of phenological events (Lu et al., 2006; Rosenzweig et al., 2008). 

Therefore, this study attempts to more closely examine tree phenology in an urban setting 

and compare it with tree phenology in rural areas.  

A second novel aspect of this study is that autumn phenology, compared to spring 

phenology, remains relatively poorly studied. There are fewer publications based on data 

from ground visual observations, remote sensing, or modeling specifically relating to 

autumn phenology (Walther et al., 2002; Parmesan & Yohe, 2003). Autumn phenology 



www.manaraa.com

6 

 

 

 

observations are considered to be more variable and complicated to record than spring 

phenology due to the overriding influence of other climatic factors (Sparks & Menzel, 

2002; Walther et al., 2002). Nevertheless, in global change research, spring phenology 

and autumn phenology are of equal importance in determining the start and end dates of 

the growing season (Morisette et al., 2009). Both are needed to set the precise switch 

dates of CO2 assimilation/fixation for each year, which critically control the calculation 

of primary productivity (Richardson et al., 2010), land surface physical processes, and 

biogeochemical cycles (Lechowicz, 1984, 237-263; Jonsson & Eklundh, 2004; Estrella & 

Menzel, 2006; Friedl et al., 2006; Delpierre et al., 2009; Penuelas et al., 2009; 

Richardson et al., 2012; Schwartz et al., 2012). Thus, my research initiates an intensive 

autumn phenological study, finds the most important driving factors, and contributes to 

the development of local, regional and global climate prediction and modeling. As a 

result, this study will add new knowledge and insight regarding the interaction between 

environmental factors and autumn phenology in an urban setting. 

The final novel aspect of this study is to explore ways of extracting canopy 

information from remote sensing images. Satellite data plays a crucial role in climate 

change and phenological research, because of their availability as sequential time series 

with full coverage of the Earth’s surface. Over the past 20 years, Land surface phenology 

(LSP), a new branch of phenological studies, has been introduced and developed along 

with the technical developments of Earth observation systems, geographic information 

analysis, and computer science. In LSP studies, the two most commonly used satellite-

derived measures are the Normalized Difference Vegetation Index (NDVI) and the 

Enhanced Vegetation Index (EVI). NDVI is calculated by taking a ratio of the near-
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infrared and red bands to detect greenness changes of vegetation (Jensen, 2000). EVI is 

modified from the NDVI by adding the blue band to correct aerosol scattering and adding 

a factor to adjust soil influences (Jensen, 2000). NDVI and EVI curves are used to 

distinguish vegetation cover from other surface features and describe generally the annual 

growing cycle of vegetation (Xu, 2005). Studies have shown that the growing season or 

the onset of seasons from satellite detection vary under the impact of warmer 

temperatures (White et al., 2002; Zhang et al., 2003; Jin et al., 2005; Gazal et al., 2008; 

White et al., 2009). NDVI and EVI, however, are limited by the spatial and temporal 

resolutions and the characteristics of integrated surface spectral reflectance signals. 

Therefore, they cannot provide ‘precise’ assessments of the onset and end of the growing 

season, or ‘precise’ phenological responses to climate at a local or regional scale (Chen et 

al., 2005). In fact, very few studies have examined how remote sensing images or 

vegetation indices (VIs) correspond to spatially comparable phenological events on the 

ground (Liang & Schwartz, 2009; Liang et al., 2011). Meanwhile, ground observation 

data are always limited by an inadequate number of observation locations and their 

uneven distribution (Chen et al., 2005; Cleland et al., 2007; Morisette et al., 2009). To 

achieve the upward scale transition of surface observations (from plot to landscape, to 

regional, and eventually to global) and provide satellite-derived canopy reflectance data 

with phenological meaning, it is important to develop methods that can combine these 

two kinds of data. This study, therefore, attempts to link remote sensing derived 

phenological changes to ground visual observations. 

In view of the above, important questions which deserve further examination arise 

regarding changes in phenophases and the nature of their driving mechanisms. For 
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example, how does plant phenology respond to warming during spring and autumn in an 

urban setting? Since strong relationships have been reported between air temperature and 

some specific phenophases, such as bud burst and flowering, questions arise as to how air 

temperature influences the occurrence of the whole progression of spring phenology. 

Also, what are the major drivers triggering autumn phenology and how are these drivers 

influencing the whole progression of autumn phenology? How do we compare and 

combine the observational results from satellites and ground-based measures? According 

to the above and many other related questions, intensive and comprehensive phenological 

observations are needed in order to detect phenological patterns and processes, as well as 

the relationships between phenological events and their driving climatic and 

environmental factors. Specifically, the knowledge of how plant phenology corresponds 

to energy exchange, mass exchange, and climatic factors will provide more accurate 

contexts and parameters for plant development models and global or regional carbon 

budget calculations.  

This study consists of three major sections related to tree phenology. The first 

topic concentrates on patterns and processes of spring and autumn phenology, explores 

their key climatic factors, and reveals their interrelationships. The second concerns 

different phenological responses to meteorological variation in an urban woodlot 

compared to a rural forest. The last topic explores ways to determine a meaningful link 

between satellite data and ground visual observations. 
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2. Literature Review 

Current plant phenological research can be divided into three major fields: ground 

visual observation phenology, land surface phenology, and simulation phenology. 

Ground visual observation phenology involves in situ phenological observations 

conducted by the human eye or onsite camera sensing (Richardson et al., 2007; Crimmins 

& Crimmins, 2008; Graham et al., 2009; Richardson et al., 2009). Land surface 

phenology (LSP), also known as remote sensing phenology, detects spatial patterns and 

temporal variations of vegetated surfaces by using remote sensing data (Friedl et al., 

2006). Simulation phenology examines spatial-temporal patterns in the past and forecasts 

spatial-temporal trends in the future by simulating phenology from climatic data.  

For the purposes of this literature review, visual observation phenology and 

simulation phenology will be dealt with together as both are related to direct on site 

observation or recording of data. Hence, the literature review has been grouped into four 

sections. Section 2.1 introduces phenological studies based on ground observations and 

simulations. Section 2.2 presents phenological studies based on remote sensing data and 

analysis. Section 2.3 focuses on phenological studies of autumn phenophases. Finally, 

section 2.4 examines phenological studies in urban settings.  

2.1 Ground visual observation and simulation phenology 
Ground visual observation phenology is a traditional way to collect phenological 

data and can be categorized in three ways according to the size of the study area and the 

duration of the observation period: the “snapshot” study, the intensive study, and the 

extensive study (Schwartz & Beaubien, 2003, 61). Ground visual phenological 

observation is an activity consuming a large amount of time and labor, so most 
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phenological observations have been conducted in an extensive way, “… in which a 

network of observers surveys a large area over a period of years” (Schwartz & Beaubien, 

2003, 61). Only a few phenological studies concentrate on intensive phenological 

observations, “… in which one or a small number of people survey a small area over a 

period of one or more growing seasons” (Schwartz & Beaubien, 2003, 61). Simulation 

phenology is a way to extend spatial and temporal coverage of phenological analysis by 

using climate data to simulate the timing of particular phenophases. 

Over the last three decades, traditional phenological studies have concentrated on 

detecting temporal trends and/or spatial patterns of phenology, as well as examining the 

relationships between the timing of phenological events (e.g. leaf unfolding, flowering) 

and lower atmospheric parameters (e.g. air temperature, relative humidity). Lower 

atmospheric parameters have long been thought of as important drivers triggering 

phenology, especially in mid-latitudes (Schnelle & Yang, 1965; Schwartz & Reiter, 

2000). Most ground phenological studies focus on spring phenology because of its 

important and close relationship with agricultural activities (Zhu & Wan, 1973) and with 

climate change research in recent decades (Parmesan, 2007; Bertin, 2008; Schwartz et al., 

2012). Sparks and Menzel (2002) suggest that “… phenology is the most responsive 

aspect of nature to warming and the simplest to observe” (p. 1716). Therefore, the 

relationship between spring phenology and lower atmospheric parameters is an important 

issue in phenological research. On the other hand, despite the complexity of autumn 

phenology, scientists have also made efforts to look into its relationship with potential 

climatic drivers, such as temperature and CO2 (Menzel et al., 2006; Taylor et al., 2008).  
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Shifts in the timing of phenophases have been demonstrated by numerous studies 

across different regions and continents. In North America, the onset of spring 

phenological events of plants and migratory birds showed an average advance of 0.12 

days per year over a period of 61 years at a single-site in southern Wisconsin (Bradley et 

al., 1999). Furthermore, in situ and modeled phenological data for lilac (Syringa 

chinensis) revealed an average 5-6 day earlier spring across North America with regional 

variations from 1959 to 1993 (Schwartz & Reiter, 2000). Regional differences of lilac 

phenology in spring advancement showed in northwestern USA-southwestern Canada, in 

the northeast USA-Canadian Atlantic provinces, and in the central USA. In the Western 

United States, the onset of spring, calculated by first flowering dates of lilac (Syringa 

vulgaris) and honeysuckle (Lonicera tatarica) and first major snowmelt records from 

1957 to 1994, confirmed that since the mid-1970s, the onset of spring has advanced about 

2 days per decade for lilacs, 3.8 days per decade for honeysuckle, and 2 days per decade 

for first major snowmelt (Cayan et al., 2001). In addition, Zhao and Schwartz (2003) 

reported that the onset of spring advanced by 0.46 days per year in southwestern 

Wisconsin and 0.25 days per year in central/eastern Wisconsin over the period 1965-1998. 

The evaluation of spring phenology of lilac (Syringa chinensis), apple (Malus domestica), 

and grape (Vitis vinifera) during the 1965-2001 period in northeastern USA and 

confirmed an advancement of spring ranging from 0.092 to 0.20 days per year (Wolfe et 

al., 2005). 

Schwartz and his colleagues investigated the influencing climatic drivers of spring 

phenology.  During the period from 1961 to 1980, significant relationships between the 

first leafing of cloned lilacs and average surface daily maximum temperatures were 
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detected in the central and eastern United States (Schwartz & Karl, 1990). Furthermore, 

many lower atmospheric parameters have been examined during the green wave (spring 

onset of photosynthesis) in the central and eastern United States over the period from 

1960 to 1986; the results indicated that the time of spring leafing was connected with 

other lower atmospheric changes (lower-atmospheric lapse rate, surface vapor pressure, 

relative humidity, visibility, and the V wind component) besides air temperature 

(Schwartz, 1992). Schwartz (1996) also found that the diurnal temperature range (DTR) 

gradually increased before first leafing, and then stopped increasing during and after first 

leafing. In addition, initial examination of the phenology-energy relationship showed that 

the seasonal transition in spring in mid-latitudes was closely related to relative heat fluxes 

(Schwartz & Crawford, 2001). These empirical studies demonstrated that the onset of 

spring in mid-latitudes behaves as a modally abrupt transition related to meteorological 

changes in the lower atmosphere (Schwartz & Crawford, 2001). Other researchers have 

also concentrated on similar issues in the contiguous United States. Abu-Asab et al. 

(2001) examined the first flowering of 100 species in the Washington DC area during the 

period from 1970 to 1999, and 89 species showed that earlier flowering was linked with 

an increase in minimum temperature.  

In Asia, the beginning of the growing season of Ginkgo biloba L. in Japan 

advanced by about 4 days while the end of the growing season was delayed by about 8 

days from 1953 to 2000 (Matsumoto et al., 2003). Both the budding event in spring and 

also the leaf-fall event in autumn show pronounced relations to air temperatures 

(Matsumoto et al., 2003). Ibanez et al. (2010) reported a similar trend in the advancement 

in spring phenology and delay in autumn phenology during the 1953-2005 period in 
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Japan and South Korea. Also, temporal trends of the onset and the end of the growing 

season were examined by employing the leaf unfolding and leaf fall data of Siberian Elm 

(Ulmus pumila) during the period from 1986 to 2005 in the temperate zone of China, and 

the start date significantly advanced by, on average, 4.0 days per decade and the end date 

was significantly delayed by, on average, 2.2 days per decade (Chen & Xu, 2012).  

In Europe, the results of Menzel and Fabian’s study (1999) showed that the 

average growing season lengthened by 10.8 days in Europe from 1959 to 1993 and the 

major contributor to this change was a rise in mean air temperature. Moreover, Menzel et 

al. (2006) confirmed, that consistent with the results of past single-site or single-species 

phenological studies, 78% of spring phenological records (leafing, flowering, and fruiting) 

showed advancement while only 3% of autumn phenological records showed significant 

delay according to analysis of mega phenological data for 542 plant and 19 animal 

species across 21 European countries during the 1971-2000 period. They analyzed the 

relationship between phenological records and temperature in the preceding months and 

estimated that the average advance of spring/summer is 2.5 days per ºC and the average 

delay of autumn is 1.0 day per ºC (Menzel et al., 2006). In south-central England, the first 

flowering date of 385 plant species showed an average advancement of 4.5 days during 

the period 1991-2000 compared with the period 1954-1989 (Fitter & Fitter, 2002). In 

Estonia, 943 time series of plant, fish, and bird phenology during the 1948-1999 period 

showed more than 80% of spring phenological phases significantly advancing with a 

range from 5 to 30 days but no obvious changes in autumn phenology (Ahas & Aasa, 

2006). These results also showed a trend toward significantly longer growing seasons in 

coastal regions of Western Estonia mostly due to the advancement of spring. In addition, 



www.manaraa.com

14 

 

 

 

a phenological dataset of 29 plant species during the 1943-2003 period in the 

Mediterranean region confirmed similar shifts of plant phenology under climate change 

(Gordo & Sanz, 2010). 

At the global scale, 62% of 677 species showed an advancement of spring during 

time intervals that ranged from 16 to 132 years with an average shift to earlier spring of 

2.3 days per decade (Parmesan & Yohe, 2003). At the same time, a meta-analysis on 61 

studies, which looked into temporal variations of spring phenology for 694 species in the 

past 50 years, showed that spring phenology advanced by an average of 5.1 days per 

decade (Root et al., 2003). Furthermore, during the 1955-2002 period, spring indices (SI) 

first leaf date, first bloom date, and last spring freeze date have universally advanced 

about from 1 to 1.5 days per decade in the Northern hemisphere, although the shifts in the 

onset of spring vary among different regions (Schwartz et al., 2006). 

Most articles reporting spatial patterns of growing season change have examined 

and discussed phenological variations at the regional or global scale. According to these 

articles, most terrestrial ecosystems have experienced a lengthening of the growing 

season and have exhibited spatial variations in this lengthening (Moulin et al., 1997; 

Fitzjarrald et al., 2001; Menzel et al., 2001; Zhang et al., 2004a; Schwartz et al., 2006; 

Doi & Takahashi, 2008). Few detailed observations at the local scale have examined 

spatial autocorrelation, spatial variations, and responses to climate change at the 

landscape level. Liang and Schwartz (2009) conducted intensive tree phenological 

observations and analysis in a Northern Wisconsin forest and concluded that there was no 

significant spatial autocorrelation or variations at the landscape level. Furthermore, they 
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introduced the Landscape Phenology (LP) index, integrating plant phenology and 

landscape heterogeneity, to bridge the gap between land surface phenology and ground 

visual observation phenology (Liang et al., 2011). 

These efforts helped establish the foundations for vegetation-climate models with 

vegetation feedback to the lower atmosphere. However, most of these studies were 

conducted in an extensive way, that is, research sites were distributed over a large area 

and only one or several species were examined at each site. The results gained from a site 

were always regarded as representative of the whole area. So we still have little 

knowledge about the responses of different species to climate change, as well as the 

spatial autocorrelation and patterns of phenological events. Intensive phenological 

observation and analysis are a suitable means by which to explore how phenology 

responds to meteorological variations. 

2.2 Land surface (remote sensing) phenology 
Remote sensing (RS) is “… the art and science of obtaining information about an 

object without being in direct physical contact with the object” (Jensen, 2007, xiii). The 

sensors, fixed on specific platforms, gather information from an electromagnetic 

spectrum reflected or emitted from the Earth’s surface. By processing and interpreting 

electromagnetic spectrum information, the objects, areas, or other phenomena of interest 

on the Earth’s surface can be detected, monitored, and analyzed. 

Compared with directly observed phenological data, remotely sensed data have 

advantages of large spatial coverage (usually at a global scale), continuous temporal 

sequences, and real time acquisition (Table 1). RS data can potentially monitor every 
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point on the Earth’s surface daily, weekly, bi-weekly, or monthly at a spatial resolution 

from 1 to 8000 meters. The data have been preprocessed and are readily available to be 

used to draw contrasts of phenological changes and responses among different areas, 

regions, and continents. Compared with traditional phenological observations and studies, 

RS based phenological research can readily provide comparisons between the dates of 

“green wave” (spring onset of photosynthesis) and “brown wave” (autumn end of 

photosynthesis) at local to global levels (Schwartz, 1998). This information can be further 

matched with climate models in global change research. As a result, RS data and methods 

have become more powerful tools for detecting regional and/or global scale phenological 

changes and their response to global warming (Reed et al., 1994; Thomas & Goudie, 

2000; White et al., 2002; Zhang et al., 2004b; White & Nemani, 2006; White et al., 2009; 

Liang et al., 2011; Chen & Xu, 2012). 

Despite those advantages, RS data are limited by inadequate spatial and temporal 

resolutions and the characteristics of integrated surface spectral reflectance signals. 

Meanwhile, traditional phenological research has its own disadvantages, being limited by 

the scarcity and uneven distribution of stations. Additionally, ground observation is an 

expensive activity requiring much time and labor. Recently, inexpensive networked 

digital cameras have been used to automatically detect phenological variations hourly or 

daily (Richardson et al., 2009). In the future, phenological research should focus on 

integrating RS based data, ground visual observations, and near-surface remote sensing 

monitoring in order to enhance both spatial and temporal resolution of phenological data. 
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Table 1: Comparisons between RS data-based phenology and ground data-based phenology 

Characteristics RS Based Data Ground Based Data 

Spatial coverage 
From local to regional to global 

(from 1 to 8,000 meters) 
Selected sampling plots 
from local to regional 

Temporal coverage 
From daily to monthly to yearly; 40 

years at most  

Objective-oriented 
intervals during a certain 
period; much longer data 

series 
Data size Very large or mass amount Small or moderate amount 

Limitation 

Integrated electromagnetic 
spectrum information in a 
heterogeneous pixel; cloud 

contamination; need high level of 
expertise, technology, and 
equipment to handle data 

Time and labor consuming 
in observation 

Related to high 
technology 

Data monitoring and processing 
limited by hardware and software 

Normally conducted by 
observers 

 

Vegetation indices (VIs) are composite indices calculated by optical 

measurements from sensors and they can reflect the coverage, greenness, and health 

conditions of vegetation. Many VIs have been generated to fulfill different research 

requirements. In phenological studies, NDVI and EVI have been widely used to assess 

vegetation phenology. Both are extracted from reflectance values of remote sensing data 

and both can provide comprehensive vegetation information at different scales (Huete et 

al., 2002). 

Many approaches have been developed to detect variations of land surface 

phenology by using VIs. White et al. (2009) employed ten widely used methods (Table 2) 

to estimate the onset of spring from satellite data from 1982 to 2006. These methods have 

been grouped into four categories by White et al. (2009): conceptual-mathematical 

methods, global threshold methods, local threshold methods, and hybrid methods. 
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Table 2: Methods for calculating the start of spring (source: White et al. 2009) 

Method Full Name Algorithm: SOS Estimate 
Quadratic Quadratic Conceptual-mathematical: first composite period 

of growing degree accumulation best fitting the 
observed NDVI time series 

NDVI 0.2 NDVI 0.2 Global threshold: NDVI exceeds 0.2 
NDVI 0.3 NDVI 0.3 Global threshold: NDVI exceeds 0.3 
DMA Delayed Moving 

Average 
Conceptual-mathematical: smoothed NDVI 
exceeds expected value of near-term historical 
NDVI 

HANTS-FFT Harmonic 
Analyses of 
NDVI Time-
Series – Fast 
Fourier 
Transform 

Conceptual-mathematical: maximum increase on 
Fourier approximation of NDVI 

Timesat Timesat Conceptual-mathematical: high amplitude 
divergence from a multiplemodel NDVI fit 

Midpointpixel Midpointpixel Local threshold: NDVI exceeds locally tuned 
threshold; run for every pixel 

PAT Percent-Above-
Threshold 

Local threshold: NDVI exceeds locally tuned 
threshold; run for the group behavior of all pixels 
within an ecoregion 

Gaussian Gaussian Hybrid: average date when Gaussian fit of NDVI 
exceeds three global thresholds 

Midpointcluster Midpointcluster Local threshold: NDVI exceeds locally tuned 
threshold; run for time series aggregated to a 
cluster level 

 

Conceptual-mathematical methods always fit the VI curves into a mathematical 

model and use the turning points (or thresholds) as the onset or end of the season. The 

advantage of these types of method is that the turning points are objectively calculated 

and determined. However, this type of methods is largely influenced by data quality. 

Conceptual-mathematical methods also may fail to detect the change of seasons in 

regions with two or three growing seasons a year, such as in some Asian countries, where 

farmers plant rice twice a year. Moreover, the turning points have no clear biological 
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meaning, so scientists cannot identify the phenological events on the ground 

corresponding to these turning points. Is it bud burst? Is it leaf out? Or is it something 

else? This is the most common limitation of the use of RS methods in phenological 

studies.  

Threshold methods include global threshold methods and local threshold methods. 

They share the similarity of setting up thresholds subjectively, but they differ in the way 

they define the thresholds. In global methods the threshold is constant for the whole 

research region, such as setting 0.2 as a threshold for NDVI. For local methods, the 

threshold varies by pixels, ecoregions, or clusters within a research region. The advantage 

of these types of methods is that they can always assess the onset and end of the growing 

season and that they can be utilized to analyze spatial patterns and temporal trends. The 

disadvantage is that the threshold is subjectively defined and, therefore, it is hard to 

impart biological meaning to the threshold. Hybrid methods combine threshold and 

conceptual-mathematical approaches.  

Of all the methods, the delayed moving average (DMA) method (Reed et al., 

1994), the seasonal midpoint NDVI (SMN) method (Schwartz, 2003), and the logistic 

model approach (Zhang et al., 2004a) are most widely used. The delayed moving average 

method, first applied by Reed (1994), is used to determine the onset of spring by 

comparing the predicted values (the sliding mean of previous n values) with the actual 

NDVI values and determining the time when a significant increase is detected. 

Occasionally, the DMA method cannot identify the turning points because of bad data 

quality or latitude influence (Reed et al., 1994). The SMN method was developed by 
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White (2003), who set up the midpoint of the minimum and maximum NDVI values as 

the onset of spring. This determined threshold is largely dependent on land cover type as 

well as being significantly influenced by the minimum and maximum NDVI values. 

Schwartz et al. (1999; 2002) conducted comparative research on the DMA, the SMN, the 

Spring Indices (SI) models, and ground visual observation data in deciduous forest and 

mixed woodland stations in the conterminous USA. The results showed that the three 

methods can all detect the relative variation in the start of the season (SOS) among years. 

SMN SOS dates were close to SI first bloom dates, while DMA SOS dates were about 

30-60 days earlier than SI first bloom dates. Only the SI approach significantly correlated 

with native species bud burst at Harvard Forest. The DMA onset of spring may be closely 

related to understory green-up, while the SMN onset of spring may detect late spring 

phenology better (Schwartz & Reed, 1999; Schwartz et al., 2002). The logistic model 

approach, employed by Zhang (2003), uses a logistic growth sigmoid function with a 

moving window to fit the MODIS (Moderate Resolution Imaging Spectro-radiometer) 

EVI annual curves. It calculates the minima and maxima of the curvature change rate, 

which correspond to the transition dates of green-up, maturity, senescence, and dormancy 

of terrestrial vegetation. This method can detect phenological seasons accurately, but it 

may be heavily influenced by understory change. 

Most phenological studies have focused on RS phenology or traditional ground 

phenology, respectively, except studies conducted by Fisher et al. (2006), Liang and 

Schwartz (2009), and Liang et al. (2011). Fisher et al. (2006) attempted to fill the scale 

gap between Landsat data and ground measurements in southern New England. They 

integrated 57 Landsat images from 1984 to 2002 to provide an average for the research 
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area, whereas ground validation data was acquired in Arcadia Wildlife Management Area 

(WMA) in RI and Douglas Forest and Buck Hill WMA at the CT/MA/RI tristate junction 

from Apr 7th to May 18th 2005. Fisher and his colleagues found a way to combine remote 

sensing and ground data, but more accurate and real-time data comparison and 

combination are needed. 

Remote sensing data and ground data were compared at the landscape level by 

using a hierarchical method (Liang & Schwartz, 2009; Liang et al., 2011).Liang et al. 

(2011) used bi-daily spring observations data of 864 trees in two 625 × 625 m study areas 

in the Park Falls Range District of the Chequamegon-Nicolet National Forest in 

Wisconsin and MODIS NDVI/EVI 250 m spatial resolution/16-day temporal resolution 

datasets for the same areas in 2008 and 2009. The observation phenology was scaled up 

from individual organism to population, then to community, finally to a Landscape 

Phenology (LP) index (Liang et al., 2011). The phenological markers derived from 

MODIS EVI were close to the full bud burst (FBB) of the whole LP as well as the FBB 

of deciduous LP. Ground phenological development in spring may have increasing 

influence on land surface phenology, especially when leaves are out. This effort helped 

bridge the gap between ground visual observation phenology and land surface phenology, 

but, one important concern remains how to increase labor, time, and funding efficiency. 

Another concern is how to acquire remote sensing data with finer spatial and temporal 

resolutions. A third concern is how to assign the biological significance to land surface 

phenology. 
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Above all, RS data and methods in phenological studies have the virtues of full 

coverage of the whole Earth’s surface, consecutive time series, near real-time 

accessibility, and spatial pattern and temporal trend tracking. They can contribute to 

global change research for the same reasons. However, the limitations of RS data cannot 

be ignored. The most widely used VI data are measured at weekly or biweekly temporal 

resolutions and 250 to 8000 meter spatial resolutions. Although RS data is efficient and 

effective for analyzing phenological patterns and trends at regional, continental or global 

scales, it is still not precise enough with clear biological and physical meanings. It calls 

for enormous efforts to effectively combine the advantages of these two kinds of data and 

methods.  

2.3 Autumn phenology 
Autumn phenology is as important as spring phenology in calculating the length 

of the growing season and determining the timing of carbon assimilation (Delpierre et al., 

2009). Commonly, air temperature is thought of as the key driver for spring phenology, 

but the key driver(s) for autumn phenology is still unclear, because autumn phenology 

has complicated characteristics and intricate relationships with both climatic and 

environmental parameters. Therefore, in direct observation phenology, most attention has 

been devoted to spring phenology and only a few articles have concentrated on autumn 

phenology, primarily in Europe and Asia. 

In Germany, Estrella and Menzel (2006) examined the relationships between the 

timing of leaf coloring of four tree species and the potential climate triggers during the 

period from 1951 to 2003, but they didn’t find enough statistical evidence to confirm the 

triggers of leaf coloring. In Japan, negative relationships between autumn phenology 
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responsiveness and latitude, and positive relationships between autumn phenology and air 

temperature were found in a study of the leaf coloring and fall data of two tree species 

over 53 years in a range of latitudes between 31º and 44º N (Doi & Takahashi, 2008). 

Two years of autumn phenology of Populus in two Free Air CO2 Enrichment 

Experiments in the US and Italy showed that the increase of CO2 leads to the delay of 

leaf coloration and leaf fall (Taylor et al., 2008). However, this study was of limited 

duration, suggesting that conclusive trends cannot be established. In Puerto Rico, the 

relationships between leaf fall patterns and climate drivers in a subtropical wet forest 

were examined and  showed that the patterns were largely influenced by solar radiation, 

photosynthetic photon flux density, day length, and air temperature (Zalamea & Gonzalez, 

2008). In France, Delpierre et al. (2009) leaf coloring were modeled for three tree species 

at 51 deciduous forest sites by using photoperiod and air temperature, and a delay of leaf 

coloring was predicted at the rate of 1.4 and 1.7 days per decade in Fagus and Quercus 

during 1951-2099. 

These studies from Europe and Asia focused on autumn phenological 

observations and attempted to address the important climatic factors driving autumn 

phenology at the regional scale. Further efforts in autumn phenological research are still 

needed, such as conducting direct autumn observations, examining the potential climatic 

factors, building efficient autumn phenological models, and validating satellite derived 

autumn senescence. 

2.4 Phenological studies in urban settings 
In most phenological studies, observation sites in rural and urban areas have not 

been differentiated, and a few articles have differentiated and examined remote sensing 
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and in situ vegetation phenology in an urban setting. White et al. (2002) used 10-year 

NDVI data from the Advanced Very High Resolution Radiometer (AVHRR) to examine 

the phenological differences between urban and rural areas in deciduous broadleaf forest 

regions in the eastern United States. Their results showed that the onset of the growing 

season has advanced and the whole growing season has extended in urban areas 

compared with rural areas (White et al., 2002).The spatial resolution of the study area is 

1 ̊latitude by 1  ̊longitude. The results of the study, therefore, showed general differences 

of the growing season between urban and rural areas due to the very coarse spatial 

resolution. Moderate or high spatial resolution data is needed for future studies 

comparing phenology in urban and rural areas. 

Zhang et al. (2004c) addressed the variations in remote sensing phenology of 

urban core areas and surrounding rural areas according to EVI from the Moderate 

Resolution Imaging Spectro-radiometer (MODIS). Results suggested that the length of 

the growing season increased in urban areas versus the adjacent rural areas, and that 

urban heat islands had a significant effect on vegetation phenology in eastern North 

America. MODIS NDVI and EVI are valuable datasets to examine vegetation phenology 

at the regional to global scales. Fisher et al. (2006) also employed a logistic-growth curve 

to examine how the onset of spring changes with increasing distance from a metropolitan 

area, showing that Rhode Island metropolitan areas have an earlier spring onset than 

comparable rural areas.  

SPOT NDVI and an urban index derived from the Defense Satellite 

Meteorological Program – Operational Linescan System (DMSP-OLS) showed no 
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significant relationship between the phenological transition dates and urbanization (Xu et 

al., 2008). None of these studies of remote sensing phenology conducted in an urban 

setting has included ground validation to verify/confirm the phenological meaning of the 

satellite data. 

As for in situ phenology conducted in an urban setting, traditional extensive 

phenological observation data of three woody plant species during the period from 1962 

to 2004 in Beijing, China showed that the growing season extended with urbanization 

(Luo et al., 2007). A comparison of leaf flushing in seven cities showed that budburst 

started earlier in three of four temperate cities and one of three tropical cities; however, 

only one temperate city followed the classic urban phenology paradigm, which is that 

higher land surface temperature and lower vegetation fraction cover lead to earlier 

budburst Gazal et al. (2008). 

There appear to be no articles focusing on intensive phenological observations in 

an urban area, although, urbanization has been shown to be the major factor influencing 

surface temperatures (Kalnay & Cai, 2003). Studies at local, regional, or global scales 

have confirmed urban heat island effects, and diurnal temperature ranges in urban areas 

showed to be significantly narrower compared to surrounding rural areas in the United 

States (Gallo et al., 1996). Zhou et al. (2004) identified 0.05ºC per decade of mean 

surface temperature increasing due to rapid urbanization in southeast China. Studies on 

differences of phenology between urban and rural areas could be both a way to test 

climate warming influences on phenology (White et al., 2002; Zhang et al., 2004c) and to 

accurately estimate the start and end of the growing season.  
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3. Research Questions 

This dissertation examines three major topics. The first is the patterns and 

processes of spring and autumn phenology and their relationships to key climatic factors 

in an urban woodlot located in Southeastern Wisconsin. An intensive phenological 

observation campaign of this kind has not been conducted in an urban area. The second 

topic is a comparison of the responses of tree phenology to climatic factors in an urban 

woodlot versus a rural forest. How to bridge the gap between direct observation 

phenology and satellite-derived land surface phenology has always been a key issue in 

phenological research. The third topic is an exploration of methods to combine direct 

observation phenology and land surface phenology, and effectively use RS reflectance 

information as well as direct observation data. In the context of these topics, the 

following questions are posed and addressed. 

The first questions addressed concern both spring and autumn phenology and 

their interaction with key climatic factors. The relationships between plant phenology and 

climatic factors are a basic issue in global warming and phenological research. 

Temperatures, including surface layer air temperature and soil temperature, usually serve 

as the key driving factors for spring phenology and as important driving factors for 

autumn phenology; light, moisture, and wind conditions are also possible factors for 

autumn phenology. Therefore, the first general question is what are the spatial patterns, 

progressions, and dominant climatic factor(s) of spring and autumn phenology in Downer 

Woods. Six sub-questions related to the first topic are addressed: 1) What are the spatial 

patterns of spring and autumn phenology in this urban woodlot? 2) Is there any spatial 

autocorrelation in the appearance of phenophases? 3) What are the annual variations of 
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spring and autumn phenology at this location? 4) What are the progressions of spring and 

autumn phenology in this urban woodlot? 5) What are the relationships between the 

phenological phases and climatic factors? 6) Are there any differences in response to 

microclimate variations among individual species?  

Few phenological studies are conducted in urban areas because of their complex 

surroundings. However, urban areas cannot be ignored in phenological research because 

they are an integral part of the Earth’s surface and are greatly impacted by 

anthropological global warming. The urban heat island effect is expected to greatly 

influence phenological events (Gazal et al., 2008), possibly causing significant 

differences between the growing seasons of urban woodlots and rural forests. Therefore, 

the second general question is how tree phenology in an urban woodlot responds to 

climate variation versus tree phenology in a rural forest. Two sub-questions will be 

addressed related to the second research topic: 1) At the species level, how is the 

phenological response to climate variations in an urban woodlot different from that in a 

rural forest, and why? 2) Is there a significantly different response of plant phenology to 

climate variation in an urban setting versus a rural setting? 

Researchers still lack knowledge about the types of ground canopy information 

reflected by remote sensing data. Therefore, this is another critical issue for global 

warming and phenological research. Researchers have detected relative changes in 

integrated phenological information derived from remotely sensed data; however, it is 

very important to understand how the data reflect actual ground phenological information. 

The data provide important initial parameters for global or regional circulation models 
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and set more reasonable and accurate growing season lengths for carbon cycle research. 

In relation to the third topic, two sub-questions will be addressed: 1) What are the onset 

and end of growing season (calculated by using Zhang’s approach from MODIS NDVI 

and EVI)? 2) Which phenophases of actual ground phenology do these results reflect? 
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4. Study Area 

4.1 Downer Woods 
The study site is Downer Woods (43º4ʹ52ʺN, 87º52ʹ51ʺW), which is a 4.495 ha 

(11.1 acre) fenced secondary forest located in the northern part of the University of 

Wisconsin-Milwaukee (UWM) campus. The UWM campus is situated in the northeastern 

corner of the city of Milwaukee, approximately 850 meters from the western shore of 

Lake Michigan (Figure 1). Since 1998, Downer Woods has been managed by the UWM 

Field Station to encourage its return to a natural state 

(http://www4.uwm.edu/fieldstation/naturalarea/downerwoods.cfm). There are two 

reasons for choosing Downer Woods as the study site for this research. First, it is easily 

accessible and is convenient for conducting regular intensive observations (bi-daily) 

because of its on-campus location. Second, the woods is in an urban setting, surrounded 

by campus buildings, residential houses, and roads. This makes the observational data 

unique and valuable for tracking urban phenology. 
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Figure 1: The main study site – Downer Woods (Source: UWM Field Station)



www.manaraa.com

31 

 

 

 

Milwaukee is located in a continental climatic zone with a long winter, moderate 

summer temperatures, and a short spring and autumn. This climatic type is typically 

classified as Dfb, which represents snow, full humid, and warm summer under the 

Köppen Climate Classification System. The climate of Milwaukee, especially the area 

close to the lakeshore, is influenced by Lake Michigan, which mitigates cold weather in 

winter and hot weather in summer. The annual average temperature in Milwaukee is 

7.8 °C. January is the coldest month with an average temperature of -7.3 °C and July is 

the warmest month with an average temperature of 21.6 °C. Milwaukee’s annual 

precipitation of 836 mm and annual snowfall of 1,196 mm leads to relatively high 

humidity. Spring gets the most of the precipitation of the year. 

(http://www1.ncdc.noaa.gov/pub/orders/IPS-B494C070-228B-4E39-83A3-

B9B3042AF362.pdf). 

The botanical history of Downer Woods was summarized in a UW-Milwaukee 

Field Station Bulletin report (Salamun, 1972). The documented records of Downer 

Woods can be traced back to 1896. Before 1896, the Pfister family owned a dairy farm in 

the area including Downer Woods. From 1896 to 1921, the Pfister family gradually 

deeded different portions of this area to the Milwaukee-Downer College, eventually 

donating a total of approximately 45 acres (18.21 ha). In 1964, it was sold to UW-

Milwaukee as 30-35 acres (12.14-14.16 ha) of woodland, named Downer Woods.  By 

1972, only about 15 acres of the land was wooded or partially wooded. Between 1964 

and 1971, oaks were the dominant trees in the woods, but very few oak seedlings and 

saplings were found, while, ash and basswood trees were abundant with adult trees as 

well as seedlings and saplings. Ash and basswood are now the dominant trees in term of 
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abundance in the woods, rather than oaks. The ages of ashes, basswood, hawthorns and 

oaks were determined in 1965. Tree rings were counted to determine the ages of ashes, 

basswood, and hawthorns, while inference was used in the case of oaks. The adult ash 

and basswood trees were about 35-50 years old, the hawthorns about 40-70 years old, and 

the oaks about 180-200 years old. Thus, currently, some of the ash and basswood trees 

should be about 75-90 years old, the hawthorns about 80-110 years old, and the oaks 

about 220-240 years old. 

The topography of Downer Woods is relatively flat and the average elevation is 

about 200 meters above mean sea level. Two small creeks run through the woods. 

Various animals live in the woods, such as squirrels, raccoons, deer, and many birds. The 

vegetation type is characterized as temperate deciduous broad-leaved forest. The 

dominant tree species are Fraxinus americana. (American white ash) and Tilia 

americana. (American basswood) (James Reinartz, UWM Field Station, unpublished data, 

1998 and 1999). These two dominant tree species were selected as sample trees for this 

research, as well as five species with lesser frequency in the woods, Quercus rubra (red 

oak), Quercus alba (white oak), Acer negundo (boxelder), Crataegus spp. (hawthorn), 

and Ostrya virginiana (American hophornbeam) (Table 3). With the exception of 

Crataegus spp. (hawthorn), the distribution of species among sample trees is closely 

proportionate to that among the larger population reported in the 1999 survey (Table 4). 

The eastern and southern edges of the woods are bordered by university buildings and 

two small grassy areas. The northern edge is adjacent to East Edgewood Avenue, and the 

western edge is adjacent to North Maryland Avenue. The surroundings are residential 

houses with small lawns. 
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Table 3: Observed tree species in Downer Woods 

Latin Name  Common Name  N  
Percentage of the 
total sample (%) 

Acer negundo Boxelder 5 4.6 
Crataegus spp. Hawthorn 2 1.9 

Fraxinus americana White Ash 45 41.7 

Ostrya virginiana 
American 

Hophornbeam 
1 1 

Quercus alba White Oak 8 7.4 
Quercus rubra Red Oak 4 3.7 
Tilia americana American Basswood 43 39.8 

Total 108 100.0 
 

Table 4: General tree species information in the 1999 Downer Woods survey  

Latin Name  Common Name  N 
Percentage of 

the total 
sample (%) 

Acer negundo Boxelder 15 3.8 
Acer platanoides Norway Maple 1 0.3 
Acer saccharum Sugar Maple 0 0.0 
Crataegus spp. Hawthorn 23 5.9 

Fraxinus americana White Ash 177 45.3 
Fraxinus nigra Black Ash 2 0.5 

Ostrya virginiana Hophornbeam 2 0.5 
Prunus serotina Black Cherry 0 0.0 
Quercus alba White Oak 13 3.3 
Quercus rubra Red Oak 7 1.8 

Tilia americana Basswood 151 38.6 
  Total 391 100.0 

* Source: J.A. Reinartz, UWM Field Station 

 

4.2 Park Falls Range District 
The Park Falls Range District is located in the Chequamegon-Nicolet National 

Forest in northern Wisconsin (Figure 2) and serves as a general research site to conduct 

comparisons of phenological responses to climate between an urban woodlot and a rural 

forest. Prof. Mark D. Schwartz, Dr. Liang Liang, and other colleagues have established 
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two study sites in the Park Falls Range District for conducting phenological observations. 

In this study, basswood phenology data from the northern study site were employed. 

Basswood is one of the prominent species in the upland forest in the northern study area 

and there are a total of 24 basswood trees sampled (Liang, 2009). 

A 447-m tall AmeriFlux flux tower (45º56ʹ46ʺN, 9016ʹ19ʺºW), which is run by 

the Chequamegon Ecosystem-Atmosphere Study (ChEAS) group, is adjacent to the study 

sites. The ChEAS is a multi-organizational program exploring biosphere-atmosphere 

interactions by gauging CO2, water, and energy since 1995. The climate of the region is 

cool continental. The mean temperature in January is -12.9 ºC and in July is 18.9 ºC, with 

an average of 4.1 ºC (http://cheas.psu.edu/). 

 

Figure 2: The contrast study site – Park Falls Range District, Wisconsin, USA (Data source: Prof. 
Schwartz and Dr. Liang) 
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5. Data and Methods 

5.1 Data - Downer Woods 

5.1.1	Tree	sampling	strategies	
The study site is an area approximately 250 meters by 237 meters (Figure 1). 

Sample trees were selected and marked with pink plastic bands and wire tags in summer 

2007. Dr. Gretchen Meyer from the UWM Field Station, an expert on the vegetation in 

the woods, helped to identify the sample species. Twenty-seven evenly distributed sites 

were selected from 56 sites identified in the 1998-1999 Field Station Survey to serve as 

phenological observation sites (Figure 1). At each site, four sample trees with the greatest 

diameters at breast height (DBH) and located within a 10-meter radius of the site center 

were selected. The distribution of species among sample trees was mainly determined by 

the distribution of species among the larger population reported in the 1998-1999 field 

survey. Therefore, the sample trees closely represent the general species composition of 

the woods. 

5.1.2	Spring	and	autumn	phenological	observations		
Intensive phenological observations and analysis have been conducted in Downer 

Woods by Prof. Schwartz’s research group each spring and autumn since autumn 2007. 

The data from intensive observations of spring and autumn phenology plays the most 

critical role in this study. The spring phenological observation protocol for deciduous 

trees followed the observation protocol developed for use in the Park Falls Range District 

of the Chequamegon National Forest in northern Wisconsin by Dr. Liang and Prof. 

Schwartz (Liang, 2009). In the Park Falls Range District, Prof. Schwartz and Dr. Liang 

started intensive spring phenological observations in 2006. Their spring phenological 

observation protocol was adapted from the German Biologische Bundesanstalt, 
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Bundessortenamt and Chemical Industry (BBCH) scheme (Sparks & Carey, 1995) and 

subsquently cross-referenced with J.C. Randolph’s five dominant phenophases for 

weekly phenological observations at the Indiana Morgan-Monroe Forest AmeriFlux site 

(Randolph, personal correspondence). This spring protocol allows rapid-recording of 

continuous phenophases corresponding to tree growth, instead of the more traditional 

discrete phenological events records. 

The spring protocol includes six key phenophases, each of which corresponds to a 

numerical ranking (Table 5): buds visible (100 level), buds swollen (200 level), buds 

open (300 level), leaves out (400 level), leaves fully unfolded (500 level), and leaf 

expansion (600 level) (Liang & Schwartz 2009). Each phenophase is further divided into 

four progressive categories. The categories of the first five phenophases are defined by 

the covering ratio to the whole canopy (<10%, 10~50%, 50~90%, and >90%). The 

categories of the last phenophase are defined by the ratio of leaf size to the size of mature 

leaf (<25%, 25~50%, 50~75%, and >75%). 

Table 5: Spring phenological protocol for deciduous trees  

Code Deciduous Phenophase Percentage

0 No Buds Visible  
100 Buds Visible <10% 
110 Buds Visible 10~50% 
150 Buds Visible 50~90% 
190 Buds Visible >90% 
200 Buds Swollen <10% 
210 Buds Swollen 10~50% 
250 Buds Swollen 50~90% 
290 Buds Swollen >90% 
300 Buds Open(leaves visible) <10% 
310 Buds Open(leaves visible) 10~50% 
350 Buds Open(leaves visible) 50~90% 
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390 Buds Open(leaves visible) >90% 
400 Leaves Out(not fully unfolded) <10% 
410 Leaves Out(not fully unfolded) 10~50% 
450 Leaves Out(not fully unfolded) 50~90% 
490 Leaves Out(not fully unfolded) >90% 
500 Leaves Fully Unfolded <10% 
510 Leaves Fully Unfolded 10~50% 
550 Leaves Fully Unfolded 50~90% 
590 Leaves Fully Unfolded >90% 
600 Leaf Expansion Level <25%  
625 Leaf Expansion Level 25%~50%
650 Leaf Expansion Level 50%~75%
675 Leaf Expansion Level >75%  

 

The autumn phenological observation protocol for deciduous trees was set up 

following similar theoretical and practical considerations to the spring protocol. It 

measures two critical phenophases in autumn (Table 6): leaf coloration (800 level) and 

leaf fall (900 level), and it uses the same types of progressive categories as the first five 

phenophases in the spring protocol. The categories of the two autumn phenophases are 

assigned to the covering ratio of the whole canopy (<10%, 10~50%, 50~90%, and >90%). 

Table 6: Autumn phenological protocol for deciduous trees 

Code Deciduous Phenophase Percentage

800 Leaf coloration <10% 
810 Leaf coloration 10~50% 
850 Leaf coloration 50~90% 
890 Leaf coloration >90% 
900 Leaf Fall <10% 
910 Leaf Fall 10~50% 
950 Leaf Fall 50~90% 
990 Leaf Fall >90% 
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The approaches to observation in spring and autumn are different. Spring 

phenology is a visually continuous progression of plant growth, and the protocol attempts 

identify the newest phenological stage. Therefore, in spring, the most advanced 

phenophase is recorded on each individual tree. In contrast, autumn phenology is less 

studied and more complex than spring phenology. Leaf fall is not a continuous 

phenological stage after leaf coloration. They may, to some extent, occur concurrently. 

Therefore, two autumn phenophases are assessed and recorded simultaneously so as to 

fully track and understand autumn phenological process. In order to maintain the 

intensity and accuracy of phenological observations, they are recorded at least every 

other day during the periods of spring and autumn. Generally, spring observations were 

undertaken from April through June, lasting for about 2 months overall, while autumn 

observations were undertaken from September through November, lasting for about 2 to 

2.5 months. Following these guidelines, five years of spring phenological observation 

data (2008-2012) and six years of autumn phenological observation data (2007-2012) 

have been collected in this study. 

5.1.3	Measurements	of	microclimatic	parameters	
Climatic elements in the lower atmosphere are primary factors influencing 

vegetation phenology. Air temperature is the major element triggering spring 

phenological events (Abu-Asab et al., 2001; Menzel et al., 2006; Schwartz et al., 2006; 

Christidis et al., 2007; Thompson & Clark, 2008), and although the factors influencing 

autumn phenophases are more complicated, air temperature likely plays an important role 

in leaf coloration and leaf fall. In Downer Woods, air temperature (at breast height), soil 

temperature (20 cm depth), and relative humidity were derived from temperature series 
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connected to data loggers recording every ten minutes. HOBO1 loggers were deployed at 

sites 11 and 23 for microclimate recordings of air and soil temperatures, and at sites 35 

and 45 for microclimate recordings of air temperature and relative humidity (Figure 1). 

Precipitation data were derived from a Shorewood meteorological dataset (located 3 

kilometers northwest of Downer Woods, recorded by Prof. Mark D. Schwartz). The 

photosynthetic photon flux density (PPFD) is recorded by light sensors. Sites 19 and 51 

are equipped with light sensors detecting light intensity under basswood canopies 

whereas sites 17 and 40 detect light intensity under white ash canopies. A reference light 

sensor was also set up on the roof of Chapman Hall, a campus building about 100 meters 

southwest of Downer Woods (Figure 1). Other micrometeorological variables, including 

wind speed and wind direction were acquired from the Milwaukee Mitchell Airport 

weather station records in the National Climatic Data Center archives. Table 7 illustrates 

the meta-data for this study. 

 

 

 

 

 

 

                                                 
1 HOBO: a series of battery powered data logger products from Onset Company measuring and recording 
temperature, humidity, light, energy, and a variety of other parameters. 
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Table 7: Basic information for phenological and climatic data 

Category  Type 
Time 

Interval  
Source  

Phenological 
data  

phenological phases  
at least every 

other day  
Ground visual 

observation  

Climatic data  

air temperature  
every ten 
minutes  

HOBO  

soil temperature  
every ten 
minutes  

HOBO  

relative humidity  
every ten 
minutes  

HOBO  

photosynthetic photon flux 
density (PPFD)   

every ten 
minutes 

Pendant light sensor 

air temperature 
daily  

Shorewood data from 
Prof. Schwartz (1994-

2012)  precipitation  

day length  daily  
Naval Oceanography 

Portal  
air temperature  

daily  
Milwaukee airport station 
(National Climatic Data 

Center) (2007-2012) 
wind speed 

wind direction 
 

In order to better detect the relationship between phenology and microclimate, the 

microclimatic data were divided into four groups as shown in Table 8. These four groups 

of microclimatic data are examined together to identify the critical factors influencing 

tree phenology at the plot scale. Temperature data included the accumulated growing 

degree-days and the daily maximum, minimum, and mean temperature calculated from 

onsite air and soil temperature data. Also included was the accumulated chilling degree-

days calculated from the Shorewood air temperature data. Moisture data included daily 

water balance, daily precipitation, and accumulated precipitation calculated from the 

Shorewood precipitation data. Light data included daily light intensity and photoperiod 

(day length). Wind data included daily wind speed and daily wind direction.  
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Table 8: Summary of microclimatic parameters 

Group  Variable  

Temperature 
 
 

air and soil temperature (daily maximum, daily minimum, daily mean, 
accumulated growing degree days) (HOBO data)  

 air temperature (accumulated chilling degree days) (Shorewood data) 

Moisture  
water balance (daily) 
precipitation (daily, accumulated)  

Light  
light intensity (daily) 
photoperiod (day length) 

Wind wind speed, wind direction (daily) 
 

Temperature	data	analysis	
Four HOBOs were deployed at sites 11, 23, 35, and 45 to record air and soil 

temperatures at ten-minute intervals in spring and autumn during the phenological 

observation period from 2007 to 2012. One HOBO was deployed in winter to continue 

tracking temperature in the woods, and one HOBO was deployed at site 56 to detect 

possible heat effect since 2011, because site 56 is close to the UWM Klotsche Center 

building, which may potentially influence air temperature nearby. Daily air temperature 

data recorded by Prof. Mark D. Schwartz in Shorewood and daily air temperature data for 

Milwaukee, downloaded from the National Oceanic and Atmospheric Administration 

(NOAA) National Weather Service Forecast Office 

(http://www.nws.noaa.gov/climate/index.php?wfo=mkx), were also used to compensate 

for the absence of summer and long-term air temperature data in the study area. 

Daily	temperature	
Daily maximum, minimum, and mean air and soil temperatures were calculated 

from ten-minute interval air and soil onsite temperatures. The differences of daily mean 

air temperature among the four sites with HOBOs by year were calculated by subtracting 
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the mean daily temperature of all four HOBO sites from the daily temperature at each 

HOBO site.  

Mean	air	temperature	comparison	among	HOBO	data,	Shorewood	data,	and	
Milwaukee	weather	station	data	

In contrast to the onsite HOBO weather data extending from autumn 2007 to 

autumn 2012, onsite summer weather data were only collected during summer 2011 and 

2012. The Shorewood weather records (-87.893W, 43.0977N, 1994-2012) and 

Milwaukee weather station data (-87.9044W, 42.955N, 1948-2012) were employed to 

compensate for the lack of long-term data and summer data in Downer Woods.  

Growing	degree‐days	and	chilling	degree‐days	
The growing degree-days (GDD) method is a widely used measure of heat 

accumulation for plant growth in agricultural and ecological fields (Hamilton et al., 2007). 

Physiological studies show that specific plant growth stages are reached only when 

enough effective temperature accumulation is achieved (de Beurs & Henebry, 2005; 

Brown & de Beurs, 2008). Hamilton et al. (2007) found that physiologically based 

models involve more parameters and are more complicated than accumulated degree-day 

based models, which have been proven to be more accurate predictors. The growing 

degree-days measurement is calculated by taking the difference between the daily mean 

temperature (T୫ୣୟ୬) and the base temperature (Tୠୟୱୣ) when T୫ୣୟ୬ is greater than	Tୠୟୱୣ. 

Normally, the base temperature for the GDD is set between 0°C and 10°C, although it 

may vary by species and locations. In this study, GDDs were calculated with base 

temperature from 0°C to 10°C in 1°C increments. Accumulated growing degree-days 

(AGDD) is the sum of GDD from day of year DOYଵ to DOYଶ (equation as below). In this 
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study, DOYଵ was set as January 1st. According to correlation analysis between AGDDs 

and spring phenological development, 3°C was chosen as the optimal base temperature. 

ܦܦܩܣ ൌ ෍ ሺ
ሺ పܶഥ െ 3ሻ݂ݎ݋	 పܶഥ ൐ 3	

	ݎ݋݂	0 పܶഥ ൑ 3	
ሻ

஽ை௒మ

௜ୀ஽ை௒భ

 

 

Chilling degree-days (CDD) are used to examine chilling requirements for plant 

growth in spring (de Beurs & Henebry, 2005; Betancourt et al., 2007). The study area has 

long and cold winters, thus the chilling requirements are expected to be fulfilled long 

before spring (Schwartz & Hanes, 2010), and therefore, it is not necessary to consider 

chilling requirements in spring phenology. Although there is still a lack of published 

research focusing on the relationships between autumn phenology and climatic factors, a 

preliminary study by Richardson et al. (2006) showed that the accumulated CDD using 

20°C as the base temperature demonstrated a relatively strong connection with autumn 

phenology at the Hubbard Brook Experimental Forest in central New Hampshire. 

Therefore, in the current study, the ACDD was examined as a potential factor influencing 

autumn phenology. In this study, CDDs were calculated with base temperature from 

10°C to 30°C in 2°C increments. Similar to the AGDD, accumulated chilling degree-days 

is the sum of CDD from day of year DOYଵ to DOYଶ (equation as below). In this study, 

DOYଵ for CDD was set as August 1st. According to correlation analysis between ACDDs 

and autumn phenological development, 20°C was chosen as the optimal base temperature. 

ܦܦܥܣ ൌ ෍ ሺ
ሺ20 െ పܶഥሻ݂ݎ݋	 పܶഥ ൏ 20	

	ݎ݋݂	0 పܶഥ ൒ 20	
ሻ

஽ை௒మ

௜ୀ஽ை௒భ
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Moisture	data	analysis	

Precipitation	
Precipitation is also a critical factor in climate change research. Because it 

influences soil moisture, which can be closely related to plant emergence and growth 

(Thomas et al., 1973). In this study, daily precipitation from the Shorewood data records 

was used. Accumulated precipitation (AP) served as an important moisture parameter and 

was calculated by summing all precipitation from day of year DOYଵ to DOYଶ (equation as 

below). In this study, DOYଵ is set as January 1st. 

ܲܣ ൌ 	 ෍ ݊݋݅ݐܽݐ݅݌݅ܿ݁ݎܲ

஽ை௒మ

௜ୀ஽ை௒భ

 

Water	balance	
Water balance is used to examine soil water storage conditions. If there is a water 

surplus, the excess will result in surface flow. If there is a water deficit, there will be a 

water shortage in regard to the needs of plant growth (Thomas et al., 1973), and therefore 

water balance may be a potential factor influencing plant phenology.  

In this study, the American climatologist C. W. Thornthwaite’s bookkeeping 

method was employed to calculate water balance as follows (Oliver, 2002).  

࢏ࢀࡿ ൌ 	൞

૚૙૙		ሺ݂ݎ݋	 ௜ܲ ൒ ܧ ௜ܶ	ܽ݊݀	ܵ ௜ܶିଵ ൅ ௜ܲ െ ܧ ௜ܶ ൒ 100ሻ
૚ି࢏ࢀࡿ ൅ ࢏ࡼ െ 	ݎ݋ሺ݂		࢏ࢀࡱ ௜ܲ ൒ ܧ ௜ܶ	ܽ݊݀	ܵ ௜ܶିଵ ൅ ௜ܲ െ ܧ ௜ܶ ൏ 100ሻ
૚ି࢏ࢀࡿ ൅ ࢏ࡼ െ 	ݎ݋ሺ݂		࢏ࢀࡱ ௜ܲ ൏ ܧ ௜ܶ	ܽ݊݀	ܵ ௜ܶିଵ ൅ ௜ܲ െ ܧ ௜ܶ ൐ 0ሻ

૙		ሺ݂ݎ݋	 ௜ܲ ൏ ܧ ௜ܶ	ܽ݊݀	ܵ ௜ܶିଵ ൅ ௜ܲ െ ܧ ௜ܶ ൑ 0ሻ

 

Here, ܧ ௜ܶ is evapotranspiration in mm, ௜ܲ is precipitation in mm, ܵ ௜ܶ is the amount of 

water stored in the soil in mm, and ݅ is the ith day. The initial ܵܶ was normally set as 10 

cm. The calculation was from March 1st to November 30th each year. The daily 
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evapotranspiration data was provided by Prof. Mark D. Schwartz through personal 

correspondence with Joe Russo and his colleagues. It is a set of data modeled on a grass 

surface, but it may still be useful in measuring annual variation of water balance for an 

urban woodlot.  

Light	data	analysis	
Photosynthesis is the process by which green plants absorb solar energy and fix it 

to produce plant carbohydrates (Rosenberg et al., 1983). “Photosynthesis is solely a 

daytime phenomenon” (Thomas & Goudie, 2000, 369). Photoperiod is “…the length of 

time that an organism is exposed to sunlight each day, generally equivalent to day length” 

(Cleland et al., 2007, 357). Therefore, day length heavily influences photosynthesis, and 

consequently influences plant growth and development. So these are potentially 

important factors influencing the timing of plant phenology. Day length data was 

downloaded from the United States Naval Observatory website 

(http://aa.usno.navy.mil/data/docs/Dur_OneYear.php).  

Light intensity, which is the strength of sunlight to which plants are exposed and 

is another factor influencing photosynthetic efficiency. Light intensity in units of lux was 

recorded by a HOBO pendant temperature/light data logger. A light sensor deployed in 

nearby full sun (not shaded) locations (Chapman Hall roof for Downer Woods) was used 

to parameterize light strength exposure for the tree canopies.  

Wind	data	analysis	
I found no references in the literature discussing the relationships between wind 

and autumn phenology, although wind may be a possible climatic factor for autumn 
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phenology, especially leaf fall. Two wind parameters were selected: average wind speed 

and direction of the fastest 2-minute wind.  

5.1.4	Satellite	data	
This study employed the Collection 5 VI product, from the MODIS (Moderate 

Resolution Imaging Spectro-radiometer) Terra satellite, acquired from the Oak Ridge 

National Laboratory Distributed Active Archive Center 

(http://daac.ornl.gov/MODIS/modis.html). The Collection 5 VI product (MOD13Q1), 

which includes both NDVI (Normalized Difference Vegetation Index) and EVI 

(Enhanced Vegetation Index) data, has a 250 m spatial resolution and a 16-day temporal 

resolution (Table 9). The downloaded dataset was from July 2007 to December 2012, 

which covered the whole period of the ground visual observation campaign.  

Table 9: Summary of satellite data 

Science Data Set Units Spatial Resolution Temporal Resolution 

NDVI NDVI 250 m 16 days 

EVI EVI 250 m 16 days 

VI Quality detailed QA Bits 250 m 16 days 

Composite day of the year Day of year 250 m 16 days 

 

5.2 Data - Park Falls 

5.2.1	Tree	sampling	
Since 2006, Prof. Schwartz’s research group has conducted intensive 

phenological observations in a 625m × 275m study area in the Park Falls Range District, 

and subsequently expanded this area to 625m × 625m and added another study area of 

similar size (Liang, 2009). The spring phenological observation protocol for deciduous 

trees was adapted and introduced by Prof. Schwartz and Dr. Liang. During spring of 2008, 
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in order to examining differences of phenological response to climate between an urban 

woods and a secondary mix temperate forest, a total of 24 basswood trees were chosen as 

part of phenological observations in the northern study area (Figure 3). Because the 

observations in the Park Falls Range District rely on restricted funding, the direct 

observation dataset is not as extensive as the one in Downer Woods. Table 10 

summarizes the availability of basswood phenological data. 

 

Figure 3: Sampling sites with basswood, Park Falls Range District, Wisconsin, USA (Data Source: 
Prof. Schwartz & Dr. Liang) 

 

Table 10: Summary of the availability of basswood phenological data in Park Falls 

Data Availability Spring Autumn
2008 Y N 
2009 Y N 
2010 Y Y 
2011 N N 
2012 N Y 

*Y: Data available; N: Data unavailable 
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5.3 Methods 

5.3.1	Preprocessing	

5.3.1.1	Outliers	in	phenological	data:	checking	and	cleaning		

The focus of this study is on the phenology of healthy trees, because unhealthy 

trees or outliers could heavily mislead the analysis and results. Therefore, trees that were 

considered to be unhealthy due to disease, damage (wind, insect, etc.), age or some other 

factor were identified by two preprocessing diagnoses and removed from the 

phenological dataset. These two preprocessing diagnoses were only employed to identify 

unusual individuals of basswood and white ash trees because of the large total number of 

individuals of these species.  

In the first diagnostic method, the corresponding dates of 200 (buds swollen), 400 

(leaves out), 600 (leaf expansion), 850 (leaf coloration), and 950 (leaf fall) phenophase 

levels were extracted. A box plot of each phenophase level was drawn to determine the 

extreme outliers. In the second diagnostic method, the corresponding phenophase levels 

at the ¼ quartile, median, and ¾ quartile of observation dates were selected. The box plot 

for each of these three particular observation dates was drawn to determine the extreme 

outliers. These extreme outliers were considered to be samples with values more than 3 

times the inter-quartile range from the ¼ quartile or the ¾ quartile. 

Two white ashes (sample tree 2 at site 13 and sample tree 4 at site 31) were 

consistently determined to be extreme outliers according to both diagnostic methods. 

Also, these two white ash trees were extremely unhealthy with sparse leaves and always 

exhibited very late spring phenology, and finally died in 2012. Therefore, the 
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phenological records of these two sample trees were removed from the data analysis. 

There were also a few other extreme outliers, but none of them appeared very often or 

consistently. These were retained in the dataset and saved for future analysis.  

In addition, sample tree 1 at site 1 (a white ash) was felled during a thunderstorm 

in autumn 2007 and the two hawthorns contracted a viral disease. Thus, they were not 

included in the dataset.  

5.3.1.2	Descriptive	summary	of	the	phenological	data	

The corresponding day of year (DOY) for each phenophase of each sample tree 

was extracted from the ground phenological observation data. The general extraction rule 

was that the corresponding DOY was set as the first date when the sample tree reached a 

specific phenophase; or if this specific phenophase was skipped, the corresponding DOY 

was set as the date when the sample tree reached the nearest phenophase. The basic 

descriptive statistics, including number of cases, mean, median, minimum, maximum, 

range, standard error of mean, and standard deviation, were summarized for each species 

individually, in addition to the entire community for each phenophase using mean 

corresponding DOY for autumn periods between 2007 and 2012 and spring periods 

between 2008 and 2012.  

5.3.1.3	Phenological	data	transformation	

The phenological observation records are ordinal data, but they include valuable 

information beyond the ranking. The data were converted into interval data in order to 

keep as much information as possible and conform to statistical evaluation requirements. 

Phenophase levels falling into the interval from 0 to 10% are set as 5%, from 10% to 50% 
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as 30%, from 50% to 90% as 70%, and greater than 90% as 95%. Most of the following 

analysis is based on these transformed phenological data.  

5.3.1.4	Satellite	data	preprocessing	

The boundary of Downer Woods (approximately 250×237 m polygon) in a 

Lambert conformal conic projection was transformed to a sinusoidal projection, which is 

the default projection for global MODIS products. The Downer Woods study area was 

overlain on the 250×250 m MODIS VI grids and eventually five pixels overlapped on the 

study area (Figure 4). Each 16-day VI value in those five pixels was extracted to calculate 

the mean VI value for the study area by using the ratio of the area of each pixel to the 

whole study area as weight. The corresponding VI quality assurance data were extracted 

to make sure that VIs used in this study were of useable quality. Moreover, the composite 

day of the year (actual image acquisition date) was extracted to comply with VI data 

instead of using the start date of the 16-day composite period.  
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Figure 4: Study area (Downer Woods) overlaying MODIS pixel grids (250×250m) 

I generated MODIS NDVI and EVI time series (2007.07-2012.12) for the study 

area, which is critical to connect to ground visual phenology. MODIS VI quality 

assurance has been divided into four categories to define overall pixel quality: 0 means 

good data; 1 means useful data; 2 means snow/ice covered data; and 3 means cloud 

covered data. In order to ensure the entire reliability of all pixels in the study area, only 

those assigned to a quality value of 0 or 1 were used in this study.  

5.3.2	Spatial	pattern	analysis	

5.3.2.1	Spatial	autocorrelation	analysis	

Waldo Tobler’s (1970) first law of geography states, “Everything is related to 

everything else, but near things are more related than distant things.” (p 236) Therefore, 

if spatial autocorrelation exists among sample trees of individual species, care must be 

taken when using statistical analysis to describe and explain a particular phenological 
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phenomenon. A basic requirement for most traditional inferential statistical tools is that 

samples should be random and independent from each other.  

The Global Moran’s I statistic is widely used to examine the degree of 

autocorrelation in spatial data (Rogerson, 2006) and was employed in this analysis to 

detect spatial autocorrelation among white ash and basswood. Other species did not have 

enough samples to permit meaningful spatial autocorrelation analysis.  

In ArcGIS, Global Moran’s I statistic is calculated as follows: 

   

Where n is the total number of spatially distributed cases, i and j are individual cases, and 

 ௜௝ is the weight of spatial adjacency between case i and j. Results close to 1 indicateݓ

strong positive spatial autocorrelation, results close to -1 indicate strong negative spatial 

autocorrelation, and 0 indicates a random pattern (Rogerson, 2006).  

For basswood and white ash, the corresponding DOY on which each phenological 

level (200, 250, 290, 300, 350, 390, 400, 450, 490, 500, 550, 590, 600, 650, 800, 850, 

890, 900, 950, and 990) was recorded has been extracted by using MATLAB software. 

At each site, if the number of the same species was greater than one, the mean date of the 

same species is used to represent the average DOY of this site. Phenophase level 800 

(first leaf coloration) in autumn 2009 for basswood and phenological level 800 in autumn 

2008 and 2009 for white ash had less than 20 values each. Therefore, in order to assure 

the accuracy of the spatial autocorrelation statistic, these records have been removed 

from the analysis. Global Moran’s I statistical tool in ArcGIS was employed to perform 
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spatial autocorrelation analysis for each phenological level of basswood and white ash 

separately.  

5.3.2.2	Spatial	regression	modeling	and	trend	analysis	

In order to examine the relationships between the phenological phases of 

dominant species and site location, multiple regression analysis was employed. Multiple 

regression analysis is a commonly used method to examine “…the relationship between a 

dependent variable and a set of independent, explanatory variables” (Rogerson, 2006, 

193). The regression equation is as follows:  

ොݕ ൌ ܽ ൅ ܾଵݔଵ ൅ ܾଶݔଶ ൅ ⋯൅ ܾ௣ݔ௣ 

Where ݕො is the predicted value of dependent variable and	ݔଵ, …, ݔ௣ are independent 

variables. The values of the parameters	ܽ, ܾଵ, …, ܾ௣ are calculated by minimizing the 

sum of the squared residuals (Rogerson, 2006).  

This method was also conducted on the two dominant species, basswood and 

white ash. Phenophase level was the dependent variable. Latitude, longitude, and the 

nearest distance from each site to the woods edge (in meters) all served as explanatory 

parameters of location. This spatial pattern analysis was conducted at the site scale and 

the latitude and longitude values were only used as the variables for location, so, the 

results cannot be extrapolated to a large scale. In regression analysis, there is an 

assumption that there is no multicollinearity among independent variables. For better 

spatial regression modeling, multicollinearity was checked by computing correlations 

among latitude, longitude, and the nearest distance to the edge.  
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5.3.3	Relationships	between	phenology	and	microclimate	

5.3.3.1	Correlation	analysis	

Simple correlation analysis was conducted to detect possible relationships 

between phenology and climatic factors. Pearson’s product-moment correlation 

coefficients were calculated to evaluate the strength of linear associations between 

phenology and climatic factors. Pearson’s product-moment correlation coefficient is 

calculated as follows: 

ݎ ൌ
∑ ሺݔ௜ െ ௜ݕሻሺݔ̅ െ തሻ௡ݕ
௜ୀଵ

ሺ݊ െ 1ሻݏ௫ݏ௬
 

Where ݏ௫ and ݏ௬ are sample standard deviations of variables x and y, respectively 

(Rogerson, 2006). 

5.3.3.2	Regression	models	for	phenology	and	microclimatic	factors	

After defining potential climatic factors, phenological progression models were 

built to examine how specific climatic factors influence phenology as well as to predict 

the phenological progress influenced by various climatic factors. In this study, the 

phenological data and related climate data were used as multi-dimensional data, which 

contain observations on sequential phenological phases over multiple years for the same 

individual species. The general regression equation is: 

෠ܻ ൌ ܾ଴ ൅ ܾଵ ଵܺ ൅ ⋯൅ ܾ௜ ௜ܺ 

Where ෠ܻ is the predicted phenophase level, ଵܺ, …, and ௜ܺ are climatic factors, ܾ଴ is 

constant, and ܾଵ ,…, and ܾ௜ are coefficients for the corresponding independent variables.  
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5.3.4	Breakpoint	detection	
 Piecewise logistic functions have been broadly applied to land surface phenology 

to determine seasonal transition dates since Zhang et al. (2003) first employed this 

method to deal with MODIS EVI data sets. This logistic model has already been proven 

to be a valid and effective approach to tracking the annual cycle of vegetation phenology 

(greenup, maturity, senescence, and dormancy), which was used to create MODIS Global 

Land Cover Dynamic products (Ganguly et al., 2010). However, I found that the 

relationships between VI and ground visual phenology also comply with the logistic 

curves; therefore, this approach was applied to track the breakpoints and further detect 

the connections between VI and ground visual phenology. The logistic function was 

adopted from Zhang et al. (2003) as follows: 

yሺܸܫሻ ൌ 	
ܿ

1 ൅ ݁௔ା௕∗௏ூ
൅ ݀ 

where VI is the vegetation index,  y(VI) is the ground visual phenophase value to the 

corrpesponding VI, a and b are fitting parameters, c+d is the maximum VI value, and d is 

the initial background VI value.  

 Breakpoints were assigned to the largest or smallest rate of change (corresponding 

to the point from steep curve to gentle curve) in the curvature of the fitted logistic models. 

The curvature K and the rate of change of the curvature Kʹ are calculated as follows: 

ܭ ൌ 	
dα
dݏ

ൌ 	െ
ܾଶܿݖሺ1 െ ሻሺ1ݖ ൅ ሻଷݖ

ሾሺ1 ൅ ሻସݖ ൅ ሺܾܿݖሻଶሿ
ଷ
ଶ

 

ʹܭ ൌ 	ܾଷܿݖ ൝
ሺ1ݖ3 െ ሻሺ1ݖ ൅ ሻଷሾ2ሺ1ݖ ൅ ሻଷݖ ൅ ܾଶܿଶݖሿ

ሾሺ1 ൅ ሻସݖ ൅ ሺܾܿݖሻଶሿ
ହ
ଶ

െ
ሺ1 ൅ ሻଶሺ1ݖ ൅ ݖ2 െ ଶሻݖ5

ሾሺ1 ൅ ሻସݖ ൅ ሺܾܿݖሻଶሿ
ଷ
ଶ

ൡ 
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Where ݖ ൌ 	 ݁௔ା௕∗௏ூ, α is the angle (in radians) of the unit tangent vector at the 

corresponding VI along a differentiable curve, and s is the unit length of the curve.
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6. Results 

6.1 Descriptive summary of the phenological data 

6.1.1	Downer	Woods	

Community	level	autumn	phenology	

Table 11 presents the basic descriptive statistics for each individual tree species 

together with the community as a whole for each autumn phenophase between 2007 and 

2012. Included in the table are the number of observations, and the means, minima, 

maxima, and standard errors of the means.  

Table 12 presents the durations (number of days) between each of the 

phenophases that represent leaf coloration and leaf fall, as well as the duration of the 

entire autumn season. Figure 5 illustrates the mean day of year (DOY) of each 

phenophase for each species. Additionally, Figures 6 and 7 represent the mean DOY of 

each phenophase for each species for each year. Leaf coloration and leaf fall were 

observed simultaneously, therefore there are overlaps in the phenophase dates for leaf 

coloration and leaf fall. 

Leaf coloration phenophases were represented by 800, 810, 850, and 890 as leaf 

color increased progressively. The overall average leaf coloring started (phenophase 800) 

on DOY was 263 and very little variation was observed between the species (Table 11, 

Figures 5 and 6). On average, the subsequent levels of leaf coloration (810, 850, and 890) 

were reached on DOY 269(±0.34), nearly one week later, DOY 278(±0.41), two weeks 

later, and DOY 282(±0.44), ~19 days later, respectively (Tables 11 and 12).  
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Leaf fall phenophases were represented by 900, 910, 950, and 990 as leaf fall 

progressed. The levels of leaf fall (900, 910, 950, and 990) were reached on average on 

DOY 269(±0.27), followed by DOY 278(±0.36), ~9 days later, DOY 286(±0.40), ~17 

days later, and finally DOY 291(±0.45), approximately three weeks after the start of leaf 

fall (Tables 11 and 12). The autumn phenology season at the community level in Downer 

Woods, therefore, lasted for approximately 28 days.  

Species	level	autumn	phenology		

In general, the timing of leaf coloration and leaf fall for white ash was 

consistently earlier than for the other species studied. For example, coloration 

phenophases 800, 810, 850, and 890 were reached on DOY 263(±0.43), 267(±0.50), 

272(±0.51), and 275(±0.52) respectively whereas leaf fall phenophases 900, 910, 950, 

and 990 were reached on DOY 268(±0.38), 275(±0.52), 282(±0.49), and 286(±0.48) 

respectively with the total duration of the autumn phenological season of this species 

being 23 days (Tables 11 and 12). In contrast to this, the oak species, especially red oak, 

were always the last trees to reach each of the autumn phenophases. On average, red oak 

reached leaf coloration phenophases 800, 810, 850, and 890 on DOY 264(±1.30), 

274(±1.55), 290(±1.51), and 296(±1.36) respectively and leaf fall phenophases 900, 910, 

950, and 990 on DOY 273(±1.38), 287(±1.35), 302(±1.28), and 313(±1.70) respectively 

with an overall autumn phenological season duration of 49 days (more than twice that of 

white ash). The difference in phenological timing of these two species increases as 

autumn phenology progresses. Both species begin to color (phenophase 800) at 

approximately the same time (DOY 263 and 264 for white ash and red oak respectively), 

but the difference increases substantially by the time of leaf fall (phenophase 990) which 
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occurs with a gap of nearly one month (27 days). Overall, white ash was the first species 

to enter winter dormancy and red oak the last. 

Basswood represents an intermediate phenology between the two previous species. 

On average, basswood began leaf coloration (phenophase level 800) on DOY 263(±0.41) 

and ended (phenophase level 890) on DOY 284(±0.57). Leaf fall for this species began 

on approximately DOY 269(±0.43) and ended on DOY 290(±0.57) resulting in an 

autumn phenology duration of approximately 27 days, similar to that of white ash (Tables 

11 and 12). 

Boxelder, which some individuals consider to be a shrub and which is not a 

dominant tree species in terms of abundance in Downer Woods, has a later autumn 

phenology than the majority of the dominant species but behaves more like the oaks. On 

average, boxelder reached the beginning of leaf coloration (phenophase level 800) on 

DOY 265(±1.08) and the end of leaf fall (phenophase level 990) on DOY 300(±1.31) 

with a total autumn phenological duration of 35 days. 
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Table 11: Case summaries of autumn leaf coloration and leaf fall phenophases from 2007 to 2012 
(Number of cases/N, mean, minimum/Min, maximum/Max, and standard error of mean/SE). Note: 
800 (start) to 890 (end) of leaf coloration phenophase; 900 (start) to 990 (end) of leaf fall phenophase.

  Leaf Coloration Leaf Fall 

Observed Species 800 810 850 890 900 910 950 990 

Basswood N 249 249 256 258 258 258 258 258
Mean 263 269 279 284 269 279 285 290
Min 255 257 260 266 262 264 268 274
Max 280 296 302 307 288 301 309 316
SE 0.41 0.52 0.57 0.57 0.43 0.52 0.51 0.57

Boxelder N 30 30 30 30 30 30 30 30
Mean 265 274 288 293 273 284 295 300
Min 257 257 267 278 262 269 278 288
Max 277 292 300 305 287 305 310 312
SE 1.08 1.72 1.36 1.34 1.45 1.79 1.42 1.31

Hophorn-
beam 

N 6 6 6 6 6 6 6 6
Mean 263 271 286 293 270 284 293 301
Min 257 264 277 285 262 278 285 295
Max 275 280 294 299 282 291 306 311
SE 2.75 2.55 2.86 2.12 2.99 2.19 3.12 2.71

Red Oak N 24 24 24 24 24 24 24 24
Mean 264 274 290 296 273 287 302 313
Min 257 259 278 284 264 278 289 299
Max 280 287 301 307 287 296 313 329
SE 1.3 1.55 1.51 1.36 1.38 1.35 1.28 1.7

White Ash N 201 201 225 240 240 240 240 240
Mean 263 267 272 275 268 275 282 286
Min 255 257 258 257 261 262 264 271
Max 280 292 296 301 282 296 301 307
SE 0.43 0.5 0.51 0.52 0.38 0.52 0.49 0.48

White Oak N 48 48 48 48 48 48 48 48
Mean 264 271 285 294 272 284 299 307
Min 257 258 262 278 265 267 288 295
Max 280 287 301 307 291 301 313 323
SE 0.91 1.12 1.33 1 0.94 1.02 1.02 1.13

Total N 558 558 589 606 606 606 606 606
Mean 263 269 278 282 269 278 286 291
Min 255 257 258 257 261 262 264 271
Max 280 296 302 307 291 305 313 329

SE 0.27 0.34 0.41 0.44 0.27 0.36 0.4 0.45
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Table 12: The duration (number of days) between each phenophase of leaf coloration and leaf fall 
(2007-2012 average) 

 Duration (days) 

Observed Species 
800-
810 

810-
850 

850-
890

Leaf 
Coloration 

900-
910 

910-
950 

950-
990 

Leaf 
Fall 

Autumn

Basswood 6 9 5 21 9 7 5 21 27
Boxelder 9 14 5 28 12 11 4 27 35
Hophornbeam 8 14 7 30 14 10 8 31 38
Red Oak 10 16 6 32 14 14 11 40 48
White Ash 4 5 3 12 7 6 4 18 23
White Oak 8 14 9 30 13 15 8 35 43
Total 6 8 5 19 9 8 5 22 28

 

 

 

Figure 5: Average (2007-2012) DOY(±SE) by species (a) leaf coloration phenophase level (800-start to 
890-end of phenophase); (b) leaf fall phenophase level (900-start to 990-end of phenophase) 
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Figure 6: Average DOY(±SE) for leaf coloration phenophases in autumn (800 (start) to 890 (end)), by 
year and species 
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Figure 7: Average DOY(±SE) for leaf fall phenophases (900 (start) to 990(end)), by year and species 

  

Community	level	spring	phenology	

Tables 13-1, 13-2, and 13-3 describe the basic statistics for each individual tree 

species and the community as a whole for each spring phenophase between 2008 and 

2012. Included in these tables are numbers of observations, means, minima, maxima, and 

standard errors of the means. Table 14 presents the duration (number of days) between 

each of the major phenophases of spring as well as the duration of the entire spring 
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season. Figure 8 shows the average DOY of phenophases for each species in spring. In 

addition, Figure 9 illustrates the average DOY of each spring phenophase for each 

species for each year.  

Spring phenophases were assigned to 100, 110, 150, 190, 200, 210, 250, 290, 300, 

310, 350, 390, 400, 410, 450, 490, 500, 510, 550, 590, 600, 625, 650, and 675 according 

to the development stages of bud (100-390) or leaves (400-675). Spring phenophases 100, 

110 and 150 were not included in the analysis because, first, at the very beginning of 

spring, the buds of woody species are very difficult to observe because of their height in 

the canopy, and second, this study is primarily focused on leaf phenology. In addition, it 

was considered appropriate to focus on the intermediate phenophase levels only for 

clarity and convenience purposes, as to provide details on each phenophase level 

individually would be excessive. The overall average DOY when buds were considered 

to be fully visible was 104(±0.44) and the major phenophase levels of spring (290, 390, 

490, 590, and 675) were reached on 115(±0.48), 11 days later, DOY 124(±0.38), 20 days 

later, DOY 131(±0.36), 27 days later, DOY 136(±0.40), approximately a month later, and 

DOY 145(±0.41), nearly six weeks later (Tables 13-1, 13-2, 13-3, and 14). Therefore, the 

total duration of the spring phenology season at the community level was approximately 

one and a half months. 

Species	level	spring	phenology	

In contrast to species level autumn phenology, the timing of spring phenology of 

white ash was consistently later than the other species at the beginning of spring but 

subsequently caught up with the basswood and oaks around the time of leaves out 
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(Figures 8 and 9). Phenophase levels 190 (buds visible), 290 (buds swollen), 390 (buds 

open), 490 (leaves out), 590 (leaves fully unfolded), and 675 (leaf expansion level) were 

reached on DOY 110(±0.70), 120(±0.63), 127(±0.48), 132(±0.51), 138(±0.54), and 

148(±0.57) respectively, with the total duration of the spring phenological season of 

white ash being ~5 weeks (Tables 13-1, 13-2, 13-3, and 14). 

In contrast to white ash, boxelder was always the first species to green up and 

advanced through the spring phenophases at a faster rate than other species (Figures 8 

and 9). On average, boxelder reached phenophases 190, 290, 390, 490, 590, and 675 on 

DOY 101(±1.13), 102(±1.91), 110(±1.92), 117(±1.98), 118(±2.19), and 130(±1.75) 

respectively, with an overall spring phenology duration of nearly a month (two weeks 

less than that of the community as a whole) (Tables 13-1, 13-2, 13-3, and 14). 

The phenology of the basswood and oaks was more like boxelder at the beginning 

of spring and more like white ash at the end of spring (Figures 8 and 9). Basswood 

reached buds fully visible on DOY 100(±0.45) and full leaf expansion on DOY 

143(±0.58) with the total phenology duration lasting six weeks (Tables 13-1, 13-2, 13-3, 

and 14). White oak exhibited the longest spring phenology season, lasting a total of seven 

weeks, beginning on DOY 101(±1.47) and ending on DOY 150(±1.22). 
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Table 13-1: Case summaries of spring phenophases 190-310 from 2008 to 2012 (Number of cases/N, 
mean, minimum/Min, maximum/Max, standard error of mean/SE). Note: 100 levels (buds visible), 
200 levels (buds swollen), 300 levels (buds open). 

Observed Species 190 200 210 250 290 300 310 
Basswood N 212 212 212 214 215 215 215

Mean 100 104 106 108 112 116 118
Min 88 88 90 94 94 95 97
Max 110 114 118 125 126 129 134
SE 0.45 0.56 0.61 0.65 0.69 0.66 0.61

Boxelder N 11 11 11 19 20 20 20
Mean 101 103 104 100 102 103 104
Min 96 96 96 88 90 90 90
Max 105 107 110 112 114 117 119
SE 1.13 1.41 1.61 2.02 1.91 2.05 2.07

Hophornbeam N 4 4 4 4 4 4 4
Mean 98 100 100 102 107 110 112
Min 88 88 88 90 92 92 92
Max 105 107 109 110 114 118 123
SE 3.57 4.29 4.6 4.44 4.99 6.14 6.92

Red Oak N 20 20 20 20 20 20 20
Mean 101 105 107 109 112 115 117
Min 88 92 92 94 95 102 104
Max 112 119 119 123 125 126 126
SE 1.81 2.13 2.27 2.42 2.29 1.92 1.81

White Ash N 203 203 203 204 205 205 205
Mean 110 113 115 118 120 122 123
Min 90 92 92 94 97 101 104
Max 135 141 141 141 141 141 141
SE 0.7 0.69 0.71 0.69 0.63 0.6 0.55

White Oak N 37 37 37 40 40 40 40
Mean 101 105 106 108 111 114 115
Min 88 88 92 94 95 97 104
Max 112 117 119 123 125 126 126
SE 1.32 1.61 1.63 1.67 1.58 1.47 1.37

Total N 487 487 487 501 504 504 504
Mean 104 108 110 112 115 118 119
Min 88 88 88 88 90 90 90
Max 135 141 141 141 141 141 141
SE 0.44 0.45 0.48 0.49 0.48 0.45 0.42
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Table 13-2: Case summaries of spring phenophases 350-500 from 2008 to 2012 (Number of cases/N, 
mean, minimum/Min, maximum/Max, standard error of mean/SE). Note: 300 levels (buds open), 400 
levels (leaves out – not fully unfolded), 500 levels (leaves fully unfolded). 

Observed Species 350 390 400 410 450 490 500 

Basswood N 215 215 215 215 215 215 215
Mean 120 124 125 126 129 130 131
Min 102 104 106 108 110 110 114
Max 136 140 140 140 142 147 147
SE 0.58 0.56 0.52 0.5 0.49 0.5 0.51

Boxelder N 20 20 20 20 20 20 20
Mean 108 110 111 112 114 117 118
Min 92 94 94 94 95 101 102
Max 121 121 123 123 123 128 129
SE 1.89 1.92 1.97 2.02 2.01 1.98 2.04

Hophornbeam N 4 5 5 5 5 5 5
Mean 115 114 116 116 118 119 120
Min 94 95 101 102 104 106 106
Max 125 126 126 126 128 129 129
SE 7.15 6.27 5.39 5.26 5.37 5.1 5.24

Red Oak N 20 20 20 20 20 20 20
Mean 120 123 125 125 128 131 132
Min 106 111 111 111 113 120 120
Max 128 133 134 134 136 140 142
SE 1.81 1.71 1.54 1.57 1.52 1.45 1.67

White Ash N 205 205 205 205 205 205 205
Mean 125 127 128 129 131 132 134
Min 104 106 106 106 106 110 110
Max 141 142 147 147 150 150 151
SE 0.52 0.48 0.49 0.49 0.52 0.51 0.53

White Oak N 40 40 40 40 40 40 40
Mean 118 122 124 125 127 131 135
Min 106 106 106 106 106 110 120
Max 128 132 136 136 142 143 147
SE 1.38 1.39 1.42 1.47 1.52 1.41 1.15

Total N 504 505 505 505 505 505 505
Mean 122 124 126 127 129 131 132
Min 92 94 94 94 95 101 102
Max 141 142 147 147 150 150 151

SE 0.4 0.38 0.37 0.36 0.37 0.36 0.37
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Table 13-3: Case summaries of spring phenophases 510-675 from 2008 to 2012 (Number of cases/N, 
mean, minimum/Min, maximum/Max, standard error of mean/SE). Note: 500 levels (leaves fully 
unfolded), 600 levels (leaf expansion level). 

Observed Species 510 550 590 600 625 650 675 

Basswood N 215 215 215 215 215 215 215
Mean 132 134 135 136 138 141 143
Min 116 120 120 122 123 125 129
Max 147 150 150 150 153 156 161
SE 0.5 0.51 0.51 0.52 0.53 0.56 0.58

Boxelder N 20 22 25 25 25 25 25
Mean 118 119 118 120 123 126 130
Min 102 104 104 104 106 110 116
Max 129 131 133 136 140 142 143
SE 2.05 2.12 2.19 2.24 2.12 1.98 1.75

Hophornbeam N 5 5 5 5 5 5 5
Mean 120 122 123 124 130 134 138
Min 106 106 108 110 120 124 129
Max 129 131 133 133 142 147 150
SE 5.24 4.93 5.01 4.46 4 4.29 4.03

Red Oak N 20 20 20 20 20 20 20
Mean 133 134 137 138 141 143 146
Min 120 122 125 125 130 134 134
Max 142 147 150 150 152 152 154
SE 1.67 1.7 1.81 1.73 1.61 1.55 1.6

White Ash N 205 205 205 205 205 205 205
Mean 134 136 138 139 143 146 148
Min 110 112 120 122 124 128 130
Max 151 153 153 154 160 168 168
SE 0.52 0.54 0.54 0.55 0.52 0.54 0.57

White Oak N 40 40 40 40 40 40 40
Mean 136 139 140 142 145 147 150
Min 120 124 128 130 132 134 138
Max 147 150 152 154 154 161 163
SE 1.17 1.12 1.12 1.05 1.08 1.15 1.22

Total N 505 507 510 510 510 510 510
Mean 133 134 136 137 140 143 145
Min 102 104 104 104 106 110 116
Max 151 153 153 154 160 168 168

SE 0.37 0.38 0.4 0.4 0.4 0.41 0.41
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Table 14: The durations between major phenophases of spring (2008-2012 average). Note: 190: fully 
buds visible; 290: fully buds swollen; 390: fully buds open; 490: fully leaves out; 590: leaves fully 
unfolded; 675: leaf fully expansion 

  Duration (days) 
Observed 
Species 

190-
290 

290-
390

390-
490

490-
590

590-
675 

Spring 

Basswood 12 12 6 5 8 43 
Boxelder 1 8 7 1 12 29 
Hophornbeam 9 7 5 4 15 40 
Red Oak 11 11 8 6 9 45 
White Ash 10 7 5 6 10 38 
White Oak 10 11 9 9 10 49 
Total 11 9 7 5 9 41 

 

 

Figure 8: Average (2008-2012) DOY(±SE), by species 
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Figure 9: Average DOY(±SE), by year and species (2008-2012) 

 

Summary	

In general, autumn phenology in Downer Woods started approximately in mid-

September and ended at the beginning of November, whereas spring phenology started 

approximately in late March and ended in late May. White ash was the last species to 

green-up in spring and the first species to yellow in autumn. The phenology of boxelder 

had a longer growing season than the dominant tree species in the Woods. The 

contrasting results between the individual species indicate substantial inter-species 
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variation in both the progression and duration of each of the phenophases examined for 

both the autumn and spring phenology seasons.  

Growing	season	

In this study, the start of the growing season (SOS) is defined as the date at which 

buds are fully open (leaves visible, phenophase level 390) and the end of the growing 

season (EOS) is determined by the date when leaves have reached full coloration 

(phenophase level 890). Therefore, the length of the growing season (LOS) is the 

duration between buds fully open (leaves visible, phenophase level 390) and leaves fully 

colored (phenophase level 890). This duration is approximately equal to the 

photosynthetic period of vegetation (Menzel, 2003; Xu & Chen, 2012).  

On average (2008-2012), the growing season in Downer Woods started on DOY 

124 and ended on DOY 281, a 157-day duration (Table 15). Boxelder was determined to 

have the longest growing season of 183 days, nearly a month longer than the growing 

season length at the community level (Table 15). The longer growing season of boxelder 

resulted from a two-week earlier start and a 10-day later end to the growing season. Red 

oak and white oak had the next longest growing seasons of 172 and 170 days respectively, 

which mainly resulted from a two week later EOS compared to the EOS at the 

community level (Table 15). Basswood had nearly the same SOS (DOY 124), EOS 

(DOY 282), and LOS (159 days) as at the community level (Table 15). White ash had the 

shortest growing season, 148 days, nine days less than the community, reflecting three 

days later in the SOS and 6 days earlier in the EOS (Table 15). 
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Table 15: Average DOY (2008-2012) of start of the growing season (SOS, 390), end of the growing 
season (EOS, 890), and length of the growing season (LOS), by species 

Average 
(2008-2012) 

SOS 
(DOY) 

EOS 
(DOY) 

LOS 
(days) 

Community 124 281 157 
Basswood 124 282 159 
White Ash 127 275 148 
Red Oak 124 295 172 
White Oak 122 292 170 
Boxelder 110 291 183 

 

From 2008 to 2012, at the community level, the SOS advanced by 1.5 (P > 0.10) 

days per year, whereas the EOS advanced by 3.24 (P ≤ 0.05) days per year; as a result, 

the LOS in Downer Woods declined at a rate of 1.7 days per year (Table 16 and Figures 

10, 11, 12). Inevitably, there was significant variation observed in the LOS between 

individual species. All of the species showed an earlier start of the growing season, which 

varied from a rate of 1 day per year (white ash) to 4 days per year (white oak), but none 

of these trends were statistically significant. Basswood, white ash, and red oak showed an 

earlier end to the growing season at a rate of more than 3 days (P < 0.10) per year. 

Boxelder and white oak showed a longer growing season at a rate of 2.1 days per year 

and 1.4 days per year, respectively. In contrast, basswood, red oak, and white ash 

exhibited a shortened growing season at a rate of 1.77 days per year, 1.4 days per year, 

and 2.34 days per year, respectively. However, similar to the SOS, none of the trends for 

the LOS was statistically significant. 

Overall, each species showed an earlier end to the growing season; therefore, the 

length of the growing season increased primarily due to an earlier start as opposed to a 
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delay in the end of the growing season. In addition, some species showed a shortening of 

the growing season primarily driven by this earlier end to the growing season. 

Table 16: Average DOY of the growing season (SOS, 390), end of the growing season (EOS, 890), and 
length of the growing season (LOS), by year and species 

Community 
SOS 

(DOY) 
EOS 

(DOY) 
LOS 

(days) 
2008 128 290 161 
2009 128 283 155 
2010 115 279 164 
2011 131 280 149 
2012 119 275 156 

Basswood 
SOS 

(DOY) 
EOS 

(DOY) 
LOS 

(days) 
2008 128 291 163 
2009 127 283 155 
2010 112 282 169 
2011 131 281 149 
2012 118 275 157 

White Ash 
SOS 

(DOY) 
EOS 

(DOY) 
LOS 

(days) 
2008 130 284 154 
2009 130 277 148 
2010 121 272 151 
2011 133 272 139 
2012 123 270 147 

 

Red Oak 
SOS 

(DOY) 
EOS 

(DOY) 
LOS 

(days) 
2008 129 304 175 
2009 128 297 169 
2010 112 291 179 
2011 130 297 167 
2012 119 288 169 

White 
Oak 

SOS 
(DOY) 

EOS 
(DOY) 

LOS 
(days) 

2008 129 299 170 
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2009 128 295 167 
2010 115 286 171 
2011 128 295 167 
2012 109 286 177 

Boxelder 
SOS 

(DOY) 
EOS 

(DOY) 
LOS 

(days) 
2008 115 297 182 
2009 115 293 178 
2010 97 284 187 
2011 111 297 186 
2012   286   

* In 2012, when the observation started, the SOS of boxelder was already reached. 

 

*: The trend is significant at the 0.10 level; **: The trend is significant at the 0.05 level. 

Figure 10: Annual variation and trend of the start of the growing season (SOS), the end of the 
growing season (EOS), and the length of the growing season (LOS), by species 
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Figure 11: Average day of year (DOY) of leaf coloration phenophases in autumn, by species 
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Figure 12: Average day of year (DOY) of leaf fall phenophases in autumn, by species 
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Figure 13: Average day of year (DOY) of phenophases in spring, by species 

 

6.1.2	Parks	Fall	Range	District	

Autumn	phenology	

The timing of both leaf coloration and leaf fall of basswoods in the Park Falls 

study site were consistently earlier than those in Downer Woods (Tables 11 and 17). Leaf 

coloration phenophases 800, 810, 850, and 890 were reached on DOY 262(±0.23), 

263(±0.38), 269(±0.40), and 273(±0.43) respectively whereas leaf fall phenophases 900, 

910, 950, and 990 were reached on DOY 262(±0.22), 267(±0.47), 271(±0.49), and 

275(±0.63) respectively. 
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Table 17: Case summaries of autumn leaf coloration and leaf fall phenophases for 2010 and 2012 
(Number of cases/N, mean, minimum/Min, maximum/Max, and standard error of mean/SE). Note: 
800 (start) to 890 (end) of leaf coloration phenophase; 900 (start) to 990 (end) of leaf fall phenophase. 

  Leaf Coloration Leaf Fall 

Observed 
Species 800 810 850 890 900 910 950 990 
Basswood N 29 47 48 48 46 48 48 48

Mean 262 263 269 273 262 267 271 275

Min 260 260 260 268 260 260 266 268

Max 263 268 275 279 263 277 279 291

SE .230 .382 .396 .428 .224 .473 .486 .629

 

Spring	phenology	

In contrast to spring phenology of basswoods in Downer Woods, the timing of 

spring phenology of basswoods at the Park Falls study site was consistently later (Tables 

13 and 18). Phenophase levels 190, 290, 390, 490, 590, and 675 were reached on DOY 

124(±0.41), 129(±0.63), 135(±0.74), 140(±0.63), 142(±0.48), and 145(±0.40) 

respectively. 

Table 18: Case summaries of spring phenophases 190-675 from 2008 to 2010 (Number of cases/N, 
mean, minimum/Min, maximum/Max, standard error of mean/SE).  

Observed 
Species 190 200 210 250 290 300 310 
Basswood N 64 67 67 69 72 72 72 
  Mean 124 125 126 128 129 130 132 
  Min 118 118 118 118 118 120 120 
  Max 131 131 133 135 139 139 142 
  SE .406 .405 .500 .574 .633 .610 .698 
Observed 
Species 350 390 400 410 450 490 500 
Basswood N 72 72 72 72 72 72 72 
  Mean 134 135 135 137 138 140 140 
  Min 121 122 122 122 124 126 126 
  Max 144 146 146 146 148 150 150 
  SE .741 .741 .737 .712 .673 .629 .600 
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Observed 
Species 510 550 590 600 625 650 675 
Basswood N 71 67 55 52 50 47 30 
  Mean 141 140 142 143 143 145 145 
  Min 127 0 134 138 140 141 142 
  Max 150 150 150 150 149 150 148 
  SE .599 2.183 .484 .428 .395 .439 .403 

 

Growing	season	

In spring 2008, 2009, and 2010, the differences of the SOS between basswoods in 

Downer Woods and Parks Falls were -12, -10, and -16 days, indicating an earlier start to 

spring in Downer Woods. However, in autumn 2010 and 2012, the differences between 

the two sites in the end of the growing season were 10 and 1 days, suggesting a later end 

to autumn in Downer Woods. In 2010 the length of the growing season was 21 days 

longer in Downer Woods than at Park Falls. 

Table 19: Average DOY of the growing season (SOS, 390), end of the growing season (EOS, 890), and 
length of the growing season (LOS), by year  

Basswood 
SOS 

(DOY) 
EOS 

(DOY) 
LG 

(days) 
2008 140     
2009 137 
2010 128 272 144 
2011 
2012   274   

 

6.2 Spatial patterns of phenology in Downer Woods 
Spring and autumn phenology vary spatially within Downer Woods, as 

represented by the two dominant tree species -basswood and white ash.  

6.2.1	Spatial	autocorrelation	analysis	
Spatial autocorrelation was carried out on all phenophase levels for basswood and 

white ash in all years to determine if spatial autocorrelation existed in each dominant 
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species in Downer Woods. The results of this analysis revealed negative spatial 

autocorrelations (-0.41 and -0.43, P ≤ 0.10) for basswood, phenophase levels 490 (leaves 

out) in spring 2008 and 200 (buds swollen) in spring 2009. In addition, phenophase levels 

800 (leaf coloration) in autumn 2007 and 900 (leaf fall) in autumn 2010 showed positive 

spatial autocorrelation (0.30 and 0.30, P ≤ 0.10). White ash, phenophase level 650 in 

spring 2008 showed positive spatial autocorrelation (0.47, P ≤ 0.05). All others analyses 

showed no significant differences from zero, therefore, the null hypothesis was accepted 

that the phenophases of basswood and white ash were randomly distributed within 

Downer Woods. 

6.2.2	Spatial	regression	model	
Pearson correlation analysis was conducted in order to test for multicollinearity 

among the three locational parameters (latitude, longitude, and the minimum distance 

from each site to the edge). The results showed that there were no significant correlations 

among these parameters and thence no multicollinearity (Table 20). Therefore, the 

parameters can be used in the following spatial regression models. 

Table 20: Correlations among latitude, longitude, and the minimum distance from each site to the 
edge 

LatitudeLongitudeDistance
Latitude Pearson Correlation 1 .004 .043

Sig. (2-tailed)   .985 .833
N 27 27 27

Longitude Pearson Correlation .004 1 .282
Sig. (2-tailed) .985   .154
N 27 27 27

Distance Pearson Correlation .043 .282 1
Sig. (2-tailed) .833 .154   
N 27 27 27
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Model 1used latitude and longitude as spatial explanatory variables, whereas 

model 2 used latitude, longitude, and the minimum distance from each site to the edge of 

Downer Woods. By comparing these two models, the existence of an edge effect in 

Downer Woods can be tested. Five out of 29 models of basswood were found to be 

statistically significant at the 0.05 or 0.10 level. For spring phenophases 650 and 675 

(leaf expansion level), there was no obvious improvement in performance from model 1 

to model 2. However, for spring phenophase 210 (buds swollen), autumn phenophases 

890 (leaf coloration) and 990 (leaf fall), R-squared from model 1 to model 2 improved 

0.084, 0.034, and 0.058, respectively (Table 21). Table 21 presents the statistical 

summary of R, R-squared, and p-values of spatial regression models for each phenophase 

level for basswood.  
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Table 21: Statistical summary of spatial regression models of basswood, by phenophase level 

Phenophase Level 
R R-squared P 

Model 1 Model 2 Model 1 Model 2 Model 1 Model 2 
SP_190 .253a .255b .064 .065 .517a .728b 
SP_200 .142a .233b .020 .054 .816a .779b 
SP_210 .467a .549b .218 .302 .085a .072b 
SP_250 .383a .385b .147 .148 .204a .372b 
SP_290 .312a .388b .098 .151 .358a .364b 
SP_300 .241a .257b .058 .066 .549a .723b 
SP_310 .279a .290b .078 .084 .446a .633b 
SP_350 .226a .258b .051 .067 .593a .718b 
SP_390 .318a .421b .101 .177 .344a .284b 
SP_400 .331a .413b .110 .170 .313a .303b 
SP_410 .398a .453b .158 .205 .179a .215b 
SP_450 .292a .300b .085 .090 .411a .605b 
SP_490 .203a .205b .041 .042 .658a .840b 
SP_500 .187a .188b .035 .035 .701a .873b 
SP_510 .237a .238b .056 .056 .561a .769b 
SP_550 .138a .145b .019 .021 .825a .937b 
SP_590 .253a .277b .064 .077 .516a .670b 
SP_600 .318a .319b .101 .102 .343a .553b 
SP_625 .421a .423b .178 .179 .142a .279b 
SP_650 .535a .537b .286 .288 .034a .085b 
SP_675 .506a .513b .256 .263 .052a .114b 
LC_800 .310a .373b .096 .139 .363a .404b 
LC_810 .180a .213b .032 .045 .720a .824b 
LC_850 .370a .403b .137 .162 .229a .327b 
LC_890 .510a .542b .260 .294 .049a .079b 
LF_900 .397a .424b .158 .179 .180a .278b 
LF_910 .247a .286b .061 .082 .533a .644b 
LF_950 .430a .471b .185 .222 .130a .180b 
LF_990 .525a .578b .276 .334 .040a .047b 

a. Predictors: (Constant), Longitude, Latitude 
b. Predictors: (Constant), Latitude, Longitude, Distance 
c. SP: spring; LC: leaf coloration; LF: leaf fall 
d. Grey shading showed the significant models 
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The spatial regression models for all basswood phenophases are presented in 

Table 22 and the standardized coefficients of each model are shown in Table 23. In 

spring, phenophase 210 (buds swollen) and phenophases 650 and 675 (leaf expansion) 

displayed positive relationships with latitude and longitude. These results suggest that 

spring phenology of basswood occurs later at locations further west and further north 

within the study area. Temperature gradients by latitude showed a greater influence on 

spring phenology of basswood than temperature gradients by longitude, which means that 

the further north, the later the phenophase. However, the models only explain from 25.6% 

to 30.2% of the variation in the spatial pattern of spring phenophases of basswood.  

In autumn, basswood leaf coloration 890 and basswood leaf fall 990 displayed 

negative relationships with latitude, longitude, and edge distance, suggesting that in 

locations further west, north, or with the greatest distance from the edge, the earlier the 

autumn phenology. In contrast to spring, temperature gradients by latitude showed less 

influence on autumn phenology of basswood than either temperature gradients by 

longitude or distance. The models explain from 29.4% to 33.4% of the variation in the 

spatial pattern of autumn phenophases of basswood.  

Table 22: The spatial regression models, basswood 

Phenophase 
Level 

Model 

SP_210 y=.078*Lon+.363*Lat-.020*Dis-80740.050 
SP_650 y=.144*Lon+.489*Lat-121212.798 
SP_675 y=.184*Lon+.457*Lat-128828.597 
LC_890 y=-.940*Lon-.530*Lat-.060*Dis+379747.109 
LF_990 y=-.886*Lon-.477*Lat-.075*Dis+354678.497 

* Lon: longitude in seconds; Lat: latitude in seconds; Dis: nearest distance in meters from each site to the 
edge of Downer Woods; SP: spring; LC: leaf coloration; LF: leaf fall 
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Table 23: The standardized coefficients of each significant spatial regression model, basswood 

Phenophase 
Level 

Standardized Coefficients 
Longitude Latitude Distance 

SP_210 .169 .475 -.301 
SP_650 .240 .493 - 
SP_675 .289 .432 - 
LC_890 -.440 -.149 -.191 
LF_990 -.439 -.142 -.253 

* Lon: longitude in seconds; Lat: latitude in seconds; Dis: nearest distance in meters from each site to the 
edge of Downer Woods; SP: spring; LC: leaf coloration; LF: leaf fall 

According to these three spring models and two autumn models of basswood, 

similar rates of phenological advance across the study area by temperature gradients 

represented by latitude were revealed in both spring and autumn, ranging from 0.363 

day/second to 0.530 day/second. In contrast, there was an obvious difference in the rate 

of phenological advance along a longitudinal gradient between autumn and spring. The 

rate of advance for autumn phenology was 0.9 day/second compared to 0.1 day/second 

for spring. Therefore, there is less spatial variation among basswood phenology in spring 

than in autumn, as shown in Figures 14 and 15, which provide examples of the spatial 

trends of basswood phenophases 625 (leaf expansion level) and 950 (leaf fall). 
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Figure 14: Spatial trend of phenophase level 625 (leaf expansion level) for basswood (a clear 
north/south trend towards later spring phenology is shown) 

 

 

Figure 15: Spatial trend of phenophase level 950 (leaf fall) for basswood (a clear east/south trend 
towards later autumn phenology is shown) 
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Table 24 summarizes R, R-squared, and p-values of each spatial regression model 

of white ash by phenophase level. Similar to the above basswood models, latitude and 

longitude were the spatial explanatory variables in model 1, and edge distance was added 

as an extra explanatory variable in model 2. In contrast to the spring models of basswood, 

those of white ash were all statistically significant at the level from 0.001 to 0.05, except 

for phenophase 190 (buds visible). On the contrary, none of the autumn models of white 

ash were statistically significant. Model 2 showed great improvement in R-squared for 

early spring phenophases (200 to 600) compared to model 1 whereas later spring 

phenophases (625-675) showed no significant improvement between models 1 and 2.  
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Table 24: Statistical summary of spatial regression models of white ash, by phenophase level 

Phenological phase 
R R-squared P   

Model 1 Model 2 Model 1 Model 2 Model 1 Model 2
SP_190 .296a .468b .087 .219 0.401 0.186 
SP_200 .276a .551b .076 .304 0.454 0.07 
SP_210 .381a .638b .145 .408 0.208 0.017 
SP_250 .383a .687b .147 .471 0.204 0.006 
SP_290 .497a .764b .247 .583 0.058 0.001 
SP_300 .518a .763b .269 .582 0.044 0.001 
SP_310 .515a .782b .265 .611 0.046 0 
SP_350 .446a .708b .199 .502 0.109 0.004 
SP_390 .439a .736b .193 .541 0.117 0.002 
SP_400 .426a .702b .181 .493 0.135 0.004 
SP_410 .445a .675b .198 .455 0.111 0.008 
SP_450 .464a .664b .216 .440 0.088 0.01 
SP_490 .398a .664b .158 .441 0.179 0.01 
SP_500 .526a .726b .276 .527 0.039 0.002 
SP_510 .531a .718b .282 .515 0.036 0.003 
SP_550 .552a .690b .305 .476 0.026 0.006 
SP_590 .553a .669b .306 .448 0.026 0.009 
SP_600 .597a .705b .356 .497 0.012 0.004 
SP_625 .709a .755b .503 .571 0.001 0.001 
SP_650 .673a .700b .453 .490 0.002 0.004 
SP_675 .635a .659b .403 .435 0.006 0.011 
LC_800 .149a .247b .022 .061 0.798 0.747 
LC_810 .071a .077b .005 .006 0.951 0.99 
LC_850 .176a .187b .031 .035 0.731 0.874 
LC_890 .203a .212b .041 .045 0.657 0.827 
LF_900 .219a .247b .048 .061 0.611 0.746 
LF_910 .150a .246b .023 .060 0.796 0.75 
LF_950 .201a .279b .040 .078 0.663 0.663 
LF_990 .239a .320b .057 .102 0.554 0.551 

a. Predictors: (Constant), Longitude, Latitude 
b. Predictors: (Constant), Latitude, Longitude, Distance 
c. Grey shading showed the significant models 

 

The significant spatial regression models of white ash are presented in Table 25 

and the standardized coefficients of each model are shown in Table 26. Spring 

phenophases of white ash, from phenophase 200 (buds swollen) to phenophase 600 (leaf 
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expansion), revealed positive relationships with latitude, longitude, and distance. This 

suggests that locations further west, north, or farthest from the edge displayed later white 

ash spring phenology. Locations closest to the edge of Downer Woods most influenced 

both early (200-290) and mid (300-510) spring phenology of white ash (Table 26).  

Table 25: The spatial regression models, white ash 

Pheno_phase Model 
SP_200 y=.083*Lon+.686*Lat+.188*Dis-132441.061 
SP_210 y=.041*Lon+1.181*Lat+.213*Dis-196080.727 
SP_250 y=.046*Lon+1.113*Lat+.230*Dis-187126.953 
SP_290 y=.110*Lon+1.402*Lat+.218*Dis-251974.347 
SP_300 y=.179*Lon+1.225*Lat+.183*Dis-246516.851 
SP_310 y=.234*Lon+1.048*Lat+.180*Dis-236416.959 
SP_350 y=.166*Lon+.853*Lat+.158*Dis-184637.901 
SP_390 y=.209*Lon+.681*Lat+.157*Dis-171486.135 
SP_400 y=.119*Lon+.813*Lat+.156*Dis-163559.605 
SP_410 y=.154*Lon+.916*Lat+.150*Dis-190767.351 
SP_450 y=.164*Lon+.983*Lat+.140*Dis-204346.466 
SP_490 y=.121*Lon+.715*Lat+.144*Dis-148957.543 
SP_500 y=.185*Lon+1.026*Lat+.135*Dis-217513.551 
SP_510 y=.159*Lon+1.098*Lat+.133*Dis-220502.730 
SP_550 y=.208*Lon+1.168*Lat+.116*Dis-246973.645 
SP_590 y=.231*Lon+1.139*Lat+.103*Dis-249503.712 
SP_600 y=.301*Lon+1.159*Lat+.101*Dis-274724.780 
SP_625 y=.404*Lon+1.127*Lat-302648.978 
SP_650 y=.352*Lon+.932*Lat-255827.576 
SP_675 y=.378*Lon+.720*Lat-231116.263 

* Lon: longitude in seconds; Lat: latitude in seconds; Dis: nearest distance in meters from each site to the 
edge of Downer Woods; SP: spring 
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Table 26: The standardized coefficients of each significant spatial regression model, white ash 

Pheno_phase
Standardized Coefficients 

Longitude Latitude Dist_Edge 
SP_200 .038 .185 .488 
SP_210 .018 .303 .524 
SP_250 .021 .294 .582 
SP_290 .053 .397 .593 
SP_300 .099 .399 .572 
SP_310 .139 .365 .602 
SP_350 .105 .318 .563 
SP_390 .142 .273 .604 
SP_400 .077 .311 .571 
SP_410 .095 .331 .519 
SP_450 .101 .356 .485 
SP_490 .081 .283 .544 
SP_500 .124 .404 .512 
SP_510 .105 .424 .494 
SP_550 .134 .444 .423 
SP_590 .152 .442 .385 
SP_600 .203 .460 .383 
SP_625 .347 .569 - 
SP_650 .341 .531 - 
SP_675 .394 .442 -  

* Lon: longitude in seconds; Lat: latitude in seconds; Dis: nearest distance in meters from each site to the 
edge of Downer Woods; SP: spring 

Temperature gradient by latitude was the second influencing factor used in the 

models. Temperature gradients by longitude showed the smallest influence on early and 

mid-spring phenology of white ash. The models explain from 30.4% to 61.1% of the 

variation in the spatial pattern of early and mid-spring phenophases of white ash. Spring 

phenophases, from phase 625 to phenophase 675 (leaf expansion level) displayed positive 

relationships with both temperature gradients by latitude and longitude. However, late in 

spring, temperature gradient by latitude was the most important spatial factor influencing 

phenology. The models explain from 43.5% to 57.1% of the variation of spatial pattern of 

late spring phenophases of white ash. However, none of the autumn models of white ash 
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were statistically significant. According to the spring models, the rate of phenological 

advance across Downer Woods by latitude varied from 0.686 day/second to 1.402 

day/second. This variation in spring phenology was greater than that of basswood, 

suggesting that spring phenology of white ash develops faster than that of basswood. 

Figures 16 and 17 provide examples of the spatial variation of white ash phenology.  

 

Figure 16: Spatial trend of phenophase 625 (leaf expansion level), white ash 
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Figure 17: Spatial trend of phenophase 950 (leaf fall), white ash 

 

6.3 Relationships between phenology and microclimate 
It is well established that phenology is influenced by a range of local climatic 

factors, so here four groups of climatic factors, temperature, moisture, light, and wind are 

examined.  

6.3.1	Microclimatic	parameters	

6.3.1.1	Daily	temperature	

From 2008 to 2012, the spring daily mean air temperature at site 45 (located in the 

southwestern corner of the woods) was consistently higher than the temperatures at the 

other three sites (Figures 18-1 and 18-2). The daily mean air temperature at site 23 

(located near the center of the woods) was lower than the temperatures at the other three 

sites most of the time. In 2011, the HOBO at site 56 detected a slightly higher 
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temperature than the HOBO at site 45. Most of the spring daily mean temperatures 

differences between sites were within ±0.60 °C. 

 

Figure 18-1：Daily mean air temperatures by HOBO sites (Note: spring 2008-spring 2009, autumn 
2007-autumn 2009; 700, 701, 773, 774 are the HOBO numbers) 
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Figure 18-2: Daily mean air temperatures by HOBO sites (Notes: spring 2010-spring 2012, autumn 
2010-autumn 2012; 700, 701, 773, 774, 783 are the HOBO numbers; ** means the HOBO close to the 
Klotsche Center) 

In general, autumn temperatures did not vary as much as spring temperatures 

during the course of the study, as no consistent differences were detected between 

monitoring instruments (Figures 18-1 and 18-2). However, site 23 recorded the lowest 

temperature of all HOBO sites whereas site 56 showed higher temperatures than sites 11 

and 23 in autumn 2011. Unfortunately, the HOBO data for site 45 was not available 

during this time. The differences in daily mean temperature between instruments in 

autumn were always within ±0.80°C of each other.  
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6.3.1.2	Mean	air	temperature	comparison	among	HOBO	data	from	Downer	

Woods,	Shorewood	data,	and	Milwaukee	weather	station	data	

Temperature data from Downer Woods was compared to the Shorewood data 

from Prof. Mark D. Schwartz and the Milwaukee weather station data, located at 

distances of 3 and 14 km from the study site respectively. Overall, temperature profiles 

for all years were very similar, with highest temperatures being recorded in summer and 

lowest in winter. The warmest temperatures were in 2012 and the coolest in 2007. 

There were no obvious differences between monthly mean air temperatures in 

Downer Woods, Shorewood, and at the Milwaukee airport weather station (Figure 19). 

Air temperature at Downer Woods was always slightly lower than that of the other two 

locations, but most of the differences were less than 1°C. The largest differences occurred 

in June 2011, when air temperature in Downer Woods was 1.76°C cooler than that at 

Shorewood and 1.77°C cooler than that at the Milwaukee airport (Figure 19). Most of the 

time, air temperature recorded at the Milwaukee weather station was slightly lower than 

that at Shorewood, but again the differences were less than 1°C. These slight differences 

may be due to the fact that the Shorewood data were collected in a typical residential area 

in Milwaukee metro area and the airport is located on the south edge of the city of 

Milwaukee, in a transition zone between urban and rural areas. Downer Woods is an 

urban woodlot surrounded by the typical residential buildings and green spaces, but the 

woods itself create a specific microclimate due to the presence of the vegetation which 

typically acts to cool the area. There were no significant differences in air temperatures 

between the three locations, and only a slightly tendency for air temperature to decrease 

from Shorewood to the Milwaukee airport to Downer Woods (Figure 19).  
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Figure 19: Mean monthly air temperatures at Downer Woods, Shorewood, and the Milwaukee 
airport weather station (DW: Downer Woods; SW: Shorewood; MKE: the Milwaukee airport 
weather station)   

Figure 20 illustrates the departure of mean monthly air temperatures from the 

1994-2006 mean temperatures at Shorewood. 2012 was the warmest year of these six 

years, except in 2012; the winters were consistently colder than the 13 year mean, 

especially in 2007. Summer temperatures were always above the 13 year mean, except in 

2009, which was slightly cooler in summer and autumn.  
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Figure 20: Temperature anomaly (°C), departure from 1994-2006 baseline 

 

6.3.1.3	Growing	degree‐days	and	chilling	degree‐days	

Figures 21-1 and 21-2 present accumulated growing degree days (AGDD, base 

temperature: 3°C) and accumulated chilling degree days (ACDD, base temperature: 20°C) 

by year, respectively. In spring, sensible heat accumulation started in the middle of 

March, and then gradually increased. 2012 was the warmest year in the time series and 

began to accumulate temperatures more rapidly after DOY~70. In autumn, temperatures 

below 20°C started at the beginning of September, after which the ACDD gradually 

increased. There were very few differences recorded between years, but 2009 tended to 

accumulate chilling more rapidly between DOYs 275 and 340 than the other years 

(Figure 21-2).  
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Figure 21-1: Comparison of accumulated growing degree days (AGDDs) by year 

  

Figure 21-2: Comparison of accumulated chilling degree days (ACDDs) by year 

 

6.3.1.4	Precipitation	

Figure 22 illustrates the departure of the total monthly precipitation from 1994 to 

2006 baseline. Rainfall peaked in early summer in 2008, mid-summer in 2010, late 

summer in 2011 and mid-autumn in 2009. Summer 2010 was the wettest with a peak 

during July of 330mm above the 1994-2006 baseline. Summer precipitation during 2009 

and 2011 was less than the other years. 
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Figure 22: Precipitation anomaly (mm), departure 1994-2006 baseline 

 

6.3.1.5	Water	balance	

Figure 23 illustrates the variation in monthly soil moisture by year. Here, we 

focused on the drought introduced by soil water deficits (Oliver, 2005). There were short-

duration droughts during each year from 2007 to 2010, although the length and timing 

differed significantly. In 2007 there was a late spring and early summer drought, in 2008 

a mid- and late summer drought, in 2009 a consistent drought throughout the whole 

summer and early autumn, and in 2010 a drought in spring as well as in mid- to late 

autumn. 

 

Figure 23: Departure from mean monthly water balance by year 
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6.3.1.6	Day	length	and	light	intensity	

Although day length is essentially consistent over years, it was important to 

present this data for completeness. Figure 24 shows day length by minute in Downer 

Woods. Day length changes gradually by day and it reaches its peak value in late June. 

Since the study area is relatively small, it was not expected that any spatial difference 

would be observed and day length was constant among years.  

 

Figure 24: Day length at Downer Woods, by DOY 

Figure 25 illustrates daily light intensity by year. In early October there was a 

steep drop in daily light intensity in both 2008 and 2009.

 

Figure 25: Daily light intensity by year 
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6.3.1.7	Wind	

Figures 26 and 27 show the wind diagrams for Milwaukee. Figure 26 presents the 

2007-2011 average wind speed and dominant wind directions. Figure 27 shows the 2007-

2011 average seasonal wind speed. The mean monthly wind speed was normally higher 

than 3 m/s. The prevailing winds came from the southeast in spring and the southwest in 

autumn. 

 

Figure 26: wind diagram for Milwaukee showing average direction and speed (2007-2011 average) 
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March-May 

 

 

June-August 
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September-November 

 

December-February 

Figure 27: Wind diagrams for spring (March-May), summer (June-August), autumn (September-
November), and winter (December-February) 
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6.3.2	Correlation	between	phenology	and	temperature	
Tables 27-29 show the Pearson’s r for spring phenology and temperature 

parameters. Temperature parameters include three groups: 1) maximum, minimum, and 

mean air temperatures; 2) maximum, minimum, and mean soil temperatures; and 3) the 

accumulated growing degree days calculated by air and soil temperatures. Tables 30-32 

show the Pearson’s r for the autumn phenophase of leaf coloration and temperature 

parameters. Tables 33-35 show the Pearson’s r for the autumn phenophase of leaf fall and 

temperature parameters, which include the maximum, minimum, and mean air and soil 

temperatures, and the accumulated chilling degree days by air temperature.  

Correlation	between	spring	phenology	and	temperature	parameters	

At both the community and the species level, the three air temperature parameters 

(maximum, minimum, and mean) showed strong positive relationships with spring 

phenology (Table 27). This suggests that when air temperature is high, spring phenology 

develops earlier. Of the three air temperature parameters, minimum air temperature 

showed the highest correlations with spring phenology of each species and the 

community as a whole (0.604, P ≤ 0.001). Among the five individual species, minimum 

temperature presented the highest correlation with spring phenology of white ash (0.631, 

P ≤ 0.001) and the lowest correlation with spring phenology of boxelder (0.407, P ≤ 

0.001). 

The three soil temperature parameters (maximum, minimum, and mean) showed 

very strong positive relationships with spring phenology (Table 28). Similar to air 

temperature, minimum soil temperature displays the highest correlations with spring 

phenology of each species and the community as a whole (0.870, P ≤ 0.001). Again, 
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spring phenology of white ash shows the strongest correlations with minimum soil 

temperature (0.879, P ≤ 0.001), and red oak shows the weakest correlations (0.835, P ≤ 

0.001).  

Among the three groups of temperature parameters, accumulated growing degree 

days (AGDD) showed the strongest relationships with spring phenology (Table 29). In 

contrast to the daily temperature parameters, AGDD by air temperature had a better 

relationship with spring phenology than AGDD by soil temperature. The correlation 

coefficient between AGDD by air temperature and spring phenology of the community as 

a whole was 0.964 at the 0.001 significance level. The correlation coefficients between 

AGDD by air temperature and spring phenology of individual species were as high as 

0.971 (basswood and red oak, P ≤ 0.001) and only as low as 0.951 (boxelder, P ≤ 0.001). 

Generally, spring phenology has a strong positive relation to temperature. Among 

these eight temperature parameters, AGDD by air temperature showed the strongest 

relationship with spring phenology, meaning that it can serve as a potential critical 

indictor to predict phenological progress in spring. 
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Table 27: Correlation between spring phenology and air temperature 

AT_MAXAT_MINAT_MEAN 
BASSWOOD Pearson Correlation .326** .554** .487** 

Sig. (2-tailed) .000 .000 .000 
N 112 112 112 

WHITE ASH Pearson Correlation .384** .631** .545** 
Sig. (2-tailed) .000 .000 .000 
N 126 126 126 

WHITE OAK Pearson Correlation .348** .599** .505** 
Sig. (2-tailed) .000 .000 .000 
N 119 119 119 

RED OAK Pearson Correlation .290** .500** .438** 
Sig. (2-tailed) .003 .000 .000 
N 106 106 106 

BOXELDER Pearson Correlation .261* .407** .375** 
Sig. (2-tailed) .019 .000 .001 
N 80 80 80 

COMMUNITYPearson Correlation .358** .604** .519** 
Sig. (2-tailed) .000 .000 .000 
N 123 123 123 

**. Correlation is significant at the 0.01 level (2-tailed). 
*. Correlation is significant at the 0.05 level (2-tailed). 
(AT_MAX means maximum air temperature; AT_MIN means minimum air temperature; AT_MEAN 
means average air temperature) 

Table 28: Correlation between spring phenology and soil temperature 

ST_MAXST_MINST_MEAN 
BASSWOOD Pearson Correlation .833** .845** .845** 

Sig. (2-tailed) .000 .000 .000 
N 112 112 112 

WHITE ASH Pearson Correlation .867** .879** .877** 
Sig. (2-tailed) .000 .000 .000 
N 126 126 126 

WHITE OAK Pearson Correlation .856** .874** .871** 
Sig. (2-tailed) .000 .000 .000 
N 119 119 119 

RED OAK Pearson Correlation .820** .835** .835** 
Sig. (2-tailed) .000 .000 .000 
N 106 106 106 

BOXELDER Pearson Correlation .821** .837** .840** 
Sig. (2-tailed) .000 .000 .000 
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N 80 80 80 
COMMUNITYPearson Correlation .857** .870** .869** 

Sig. (2-tailed) .000 .000 .000 
N 123 123 123 

**. Correlation is significant at the 0.01 level (2-tailed). 
*. Correlation is significant at the 0.05 level (2-tailed). 
(ST_MAX means maximum soil temperature; ST_MIN means minimum soil temperature; ST_MEAN 
means average soil temperature) 

Table 29: Correlation between spring phenology and accumulated growing degree days 

AGDD_ATAGDD_ST
BASSWOOD Pearson Correlation .971** .935**

Sig. (2-tailed) .000 .000
N 119 119

WHITE ASH Pearson Correlation .952** .953**

Sig. (2-tailed) .000 .000
N 133 133

WHITE OAK Pearson Correlation .966** .950**

Sig. (2-tailed) .000 .000
N 126 126

RED OAK Pearson Correlation .971** .942**

Sig. (2-tailed) .000 .000
N 113 113

BOXELDER Pearson Correlation .951** .897**

Sig. (2-tailed) .000 .000
N 87 87

COMMUNITY Pearson Correlation .964** .952**

Sig. (2-tailed) .000 .000
N 130 130

**. Correlation is significant at the 0.01 level (2-tailed). 
*. Correlation is significant at the 0.05 level (2-tailed). 
(AGDD_AT means accumulated growing degree days by air temperature; AGDD_ST means accumulated 
growing degree days by soil temperature) 

 

Correlation	between	autumn	phenology	and	temperature	parameters	

Both at the community and individual species level, three air temperature 

parameters also showed relatively strong negative relationships with autumn phenology 

(Tables 30 and 33). Similar to spring phenology, minimum air temperature presented the 
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strongest correlations with leaf coloration and leaf fall of each species and the community 

as a whole (-0.401 and -0.577, respectively, P ≤ 0.001). Among the five individual 

species, minimum temperature showed the strongest correlations with leaf coloration of 

basswood (-0.444, P ≤ 0.001) and leaf fall of white oak (-0.576, P ≤ 0.001), and the 

weakest correlations with leaf coloration of white ash (-0.228, P ≤ 0.05) and leaf fall of 

white ash (-0.414, P ≤ 0.001).  

Three soil temperature parameters also showed strong negative relationships with 

autumn phenology (Tables 31 and 34). Differing from air temperature, maximum soil 

temperature displayed the strongest correlations with leaf coloration and leaf fall of each 

species and the community as a whole (-0.645 and -0.752, respectively, P ≤ 0.001).  

Again, leaf coloration of basswood and leaf fall of white oak showed the strongest 

correlations with maximum soil temperature (-0.685 and -0.748, respectively, P ≤ 0.001), 

and leaf coloration and leaf fall of white ash exhibited the weakest correlations with it (-

0.476 and -0.560, respectively, P ≤ 0.001).  

Similar to spring phenology, among the three groups of temperature parameters, 

accumulated chilling degree days (ACDD) showed the strongest relationships with   

autumn phenology (Tables 32 and 35). The correlation coefficients between ACDD by 

air temperature and leaf coloration and leaf fall of the community as a whole were 0.869 

and 0.877 (P ≤ 0.001), respectively. The correlation coefficients between ACDD by air 

temperature and leaf coloration and leaf fall of individual species were as high as 0.892 

(basswood, P ≤ 0.001) and 0.935 (white oak, P ≤ 0.001), respectively, and as low as 

0.721 (white ash, P ≤ 0.001) and 0.793 (white ash, P ≤ 0.001), respectively. 
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Generally, the association between autumn phenology and temperature 

parameters was also strong, although not as strong as for spring phenology. ACDD by air 

temperature illustrated a very strong positive relationship with autumn phenology.  

Table 30: Correlation between the phenophase of leaf coloration and air temperature 

AT_MAXAT_MINAT_MEAN 
BASSWOOD Pearson Correlation -.276** -.444** -.420** 

Sig. (2-tailed) .005 .000 .000 
N 103 103 103 

WHITE ASH Pearson Correlation -.174 -.228* -.250* 
Sig. (2-tailed) .116 .038 .023 
N 83 83 83 

WHITE OAK Pearson Correlation -.197* -.407** -.349** 
Sig. (2-tailed) .044 .000 .000 
N 105 105 105 

RED OAK Pearson Correlation -.195* -.362** -.316** 
Sig. (2-tailed) .046 .000 .001 
N 105 105 105 

BOXELDER Pearson Correlation -.220* -.389** -.361** 
Sig. (2-tailed) .028 .000 .000 
N 100 100 100 

COMMUNITYPearson Correlation -.242* -.401** -.382** 
Sig. (2-tailed) .013 .000 .000 
N 104 104 104 

**. Correlation is significant at the 0.01 level (2-tailed). 
*. Correlation is significant at the 0.05 level (2-tailed). 
(AT_MAX means maximum air temperature; AT_MIN means minimum air temperature; AT_MEAN 
means average air temperature) 

Table 31: Correlation between the phenophase of leaf coloration and soil temperature 

ST_MAXST_MINST_MEAN 
BASSWOOD Pearson Correlation -.685** -.633** -.655** 

Sig. (2-tailed) .000 .000 .000 
N 103 103 103 

WHITE ASH Pearson Correlation -.476** -.422** -.447** 
Sig. (2-tailed) .000 .000 .000 
N 83 83 83 

WHITE OAK Pearson Correlation -.637** -.601** -.616** 
Sig. (2-tailed) .000 .000 .000 
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N 105 105 105 
RED OAK Pearson Correlation -.585** -.550** -.565** 

Sig. (2-tailed) .000 .000 .000 
N 105 105 105 

BOXELDER Pearson Correlation -.614** -.580** -.594** 
Sig. (2-tailed) .000 .000 .000 
N 100 100 100 

COMMUNITYPearson Correlation -.645** -.594** -.616** 
Sig. (2-tailed) .000 .000 .000 
N 104 104 104 

**. Correlation is significant at the 0.01 level (2-tailed). 
*. Correlation is significant at the 0.05 level (2-tailed). 
(ST_MAX means maximum soil temperature; ST_MIN means minimum soil temperature; ST_MEAN 
means average soil temperature) 

 

Table 32: Correlation between the phenophase of leaf coloration and accumulated chilling degree 
days 

ACDD_AT
BASSWOOD Pearson Correlation .892**

Sig. (2-tailed) .000
N 111

WHITE ASH Pearson Correlation .721**

Sig. (2-tailed) .000
N 91

WHITE OAK Pearson Correlation .861**

Sig. (2-tailed) .000
N 113

RED OAK Pearson Correlation .852**

Sig. (2-tailed) .000
N 113

BOXELDER Pearson Correlation .855**

Sig. (2-tailed) .000
N 108

COMMUNITYPearson Correlation .869**

Sig. (2-tailed) .000
N 112

**. Correlation is significant at the 0.01 level (2-tailed). 
*. Correlation is significant at the 0.05 level (2-tailed). 
(ACDD_AT means accumulated growing degree days by air temperature) 
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Table 33: Correlation between the phenophase of leaf fall and air temperature 

AT_MAXAT_MINAT_MEAN 
BASSWOOD Pearson Correlation -.355** -.533** -.491** 

Sig. (2-tailed) .000 .000 .000 
N 113 113 113 

WHITE ASH Pearson Correlation -.251* -.414** -.380** 
Sig. (2-tailed) .017 .000 .000 
N 90 90 90 

WHITE OAK Pearson Correlation -.467** -.576** -.551** 
Sig. (2-tailed) .000 .000 .000 
N 134 134 134 

RED OAK Pearson Correlation -.492** -.564** -.556** 
Sig. (2-tailed) .000 .000 .000 
N 132 132 132 

BOXELDER Pearson Correlation -.313** -.484** -.431** 
Sig. (2-tailed) .001 .000 .000 
N 113 113 113 

COMMUNITYPearson Correlation -.426** -.577** -.541** 
Sig. (2-tailed) .000 .000 .000 
N 131 131 131 

**. Correlation is significant at the 0.01 level (2-tailed). 
*. Correlation is significant at the 0.05 level (2-tailed). 
(AT_MAX means maximum air temperature; AT_MIN means minimum air temperature; AT_MEAN 
means average air temperature) 

Table 34: Correlation between the phenophase of leaf fall and soil temperature 

ST_MAX ST_MINST_MEAN 
BASSWOOD Pearson Correlation -.736** -.711** -.721** 

Sig. (2-tailed) .000 .000 .000 
N 113 113 113 

WHITE ASH Pearson Correlation -.560** -.526** -.539** 
Sig. (2-tailed) .000 .000 .000 
N 90 90 90 

WHITE OAK Pearson Correlation -.748** -.747** -.747** 
Sig. (2-tailed) .000 .000 .000 
N 134 134 134 

RED OAK Pearson Correlation -.715** -.715** -.714** 
Sig. (2-tailed) .000 .000 .000 
N 132 132 132 

BOXELDER Pearson Correlation -.663** -.643** -.650** 
Sig. (2-tailed) .000 .000 .000 
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N 113 113 113 
COMMUNITY Pearson Correlation -.752** -.733** -.741** 

Sig. (2-tailed) .000 .000 .000 
N 131 131 131 

**. Correlation is significant at the 0.01 level (2-tailed). 
*. Correlation is significant at the 0.05 level (2-tailed). 
(ST_MAX means maximum soil temperature; ST_MIN means minimum soil temperature; ST_MEAN 
means average soil temperature) 

Table 35: Correlation between the phenophase of leaf fall and accumulated chilling degree days 

ACDD_AT
BASSWOOD Pearson Correlation .899**

Sig. (2-tailed) .000
N 121

WHITE ASH Pearson Correlation .793**

Sig. (2-tailed) .000
N 98

WHITE OAK Pearson Correlation .935**

Sig. (2-tailed) .000
N 149

RED OAK Pearson Correlation .914**

Sig. (2-tailed) .000
N 149

BOXELDER Pearson Correlation .874**

Sig. (2-tailed) .000
N 121

COMMUNITYPearson Correlation .877**

Sig. (2-tailed) .000
N 145

**. Correlation is significant at the 0.01 level (2-tailed). 
*. Correlation is significant at the 0.05 level (2-tailed). 
(ACDD_AT means accumulated growing degree days by air temperature) 
 

6.3.3	Correlation	between	phenology	and	moisture	
Table 36 shows the Pearson’s r for spring phenology, daily water balance, and 

accumulated precipitation. Tables 37 and 38 show the Pearson’s r for autumn phenology, 

daily water balance, and accumulated precipitation.  
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In spring, water balance showed significant negative relationships with phenology 

at both the community and individual species levels (Table 36). The Pearson’s r for water 

balance and spring phenology of the community as a whole was -0.609 (P ≤ 0.001). At 

the individual species level, correlations were negative with Pearson’s r ranging from -

0.665 (red oak, P ≤ 0.001) to -0.429 (boxelder, P ≤ 0.001). Accumulated precipitation 

presented significant positive relationships with phenology at both levels. The Pearson’s r 

for the accumulated precipitation and spring phenology of the community as a whole was 

0.554 (P ≤ 0.001). At the individual species level, the Pearson’s r was as high as 0.608 

(white ash, P ≤ 0.001) and as low as 0.349 (boxelder, P ≤ 0.001). 

In autumn, water balance shows significant negative relationships with leaf 

coloration of the community as a whole (-0.345, P ≤ 0.001), and with basswood (-0.403, 

P ≤ 0.001), white ash (-0.446, P ≤ 0.001), and boxelder (-0.324, P ≤ 0.001). This suggests 

that when water is limiting leaf coloration occurs early. There were no significant 

correlations between water balance and leaf coloration of white oak or red oak. Differing 

from water balance, accumulated precipitation showed positive relationships with leaf 

coloration of the community as whole (0.224, P ≤ 0.05), and with white ash (0.225, P ≤ 

0.05), white oak (0.404, P ≤ 0.001), red oak (0.213, P ≤ 0.05), and boxelder (0.275, P ≤ 

0.01).  

In contrast to leaf coloration, leaf fall showed weaker relationships with water 

balance and accumulated precipitation (Table 38). Water balance only showed a 

significant negative relationship with leaf fall of basswood (-0.219, P ≤ 0.05), while there 

were no significant relationships with leaf fall of the community as whole and other 
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individual species. The accumulated precipitation showed significant positive 

relationships with the community as whole (0.237, P ≤ 0.01), white oak (0.320, P ≤ 

0.001), red oak (0.254, P ≤ 0.01), and boxelder (0.187, P ≤ 0.05), but no significant 

relationships with leaf fall of basswood and white ash.   

Table 36: Correlation between spring phenology, water balance, and the accumulated precipitation 

WP Accu_PRECIPITATION 
BASSWOOD Pearson Correlation-.625** .481** 

Sig. (2-tailed) .000 .000 
N 119 119 

WHITE ASH Pearson Correlation-.586** .608** 
Sig. (2-tailed) .000 .000 
N 136 136 

WHITE OAK Pearson Correlation-.593** .551** 
Sig. (2-tailed) .000 .000 
N 126 126 

RED OAK Pearson Correlation-.665** .412** 
Sig. (2-tailed) .000 .000 
N 113 113 

BOXELDER Pearson Correlation-.429** .349** 
Sig. (2-tailed) .000 .001 
N 87 87 

COMMUNITYPearson Correlation-.609** .554** 
Sig. (2-tailed) .000 .000 
N 130 130 

**. Correlation is significant at the 0.01 level (2-tailed). 
*. Correlation is significant at the 0.05 level (2-tailed). 
(WB means water balance; Accu_PRECIPITATION means accumulated precipitation) 

Table 37: Correlation between the phenophase of leaf coloration, water balance, and the 
accumulated precipitation 

WB Accu_PRECIPITATION 
BASSWOOD Pearson Correlation-.403** .170 

Sig. (2-tailed) .000 .074 

N 86 111 

WHITE ASH Pearson Correlation-.446** .225* 

Sig. (2-tailed) .000 .032 
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N 74 91 

WHITE OAK Pearson Correlation -.155 .404** 

Sig. (2-tailed) .151 .000 

N 87 113 

RED OAK Pearson Correlation -.081 .213* 

Sig. (2-tailed) .453 .023 

N 88 113 

BOXELDER Pearson Correlation-.324** .275** 

Sig. (2-tailed) .003 .004 

N 83 108 

COMMUNITYPearson Correlation-.345** .224* 

Sig. (2-tailed) .001 .018 

N 87 112 
**. Correlation is significant at the 0.01 level (2-tailed). 
*. Correlation is significant at the 0.05 level (2-tailed). 
(WB means water balance; Accu_PRECIPITATION means accumulated precipitation) 

Table 38: Correlation between the phenophase of leaf fall, water balance, and the accumulated 
precipitation 

WB Accu_PRECIPITATION 
BASSWOOD Pearson Correlation-.219* .157 

Sig. (2-tailed) .034 .086 
N 94 121 

WHITE ASH Pearson Correlation -.093 .174 
Sig. (2-tailed) .414 .087 
N 80 98 

WHITE OAK Pearson Correlation .024 .320** 
Sig. (2-tailed) .801 .000 
N 117 149 

RED OAK Pearson Correlation .053 .254** 
Sig. (2-tailed) .570 .002 
N 119 149 

BOXELDER Pearson Correlation -.036 .187* 
Sig. (2-tailed) .729 .040 
N 94 121 

COMMUNITYPearson Correlation -.043 .237** 
Sig. (2-tailed) .646 .004 
N 115 145 

**. Correlation is significant at the 0.01 level (2-tailed). 
*. Correlation is significant at the 0.05 level (2-tailed). 
(WB means water balance; Accu_PRECIPITATION means accumulated precipitation) 
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Tables 39 and 40 illustrate the correlation between autumn phenology and 

accumulated precipitation by year. The correlation between autumn phenology and 

accumulated precipitation by year was significantly different from the correlation 

between them during the whole observation period from 2007 to 2011. There was a 

strong association between autumn phenology and accumulated precipitation during each 

year (Tables 39 and 40). The Pearson’s r for the accumulated precipitation and leaf 

coloration was as high as 0.965 (white oak, the community as a whole 2008, P ≤ 0.001) 

and as low as 0.567 (boxelder 2010, P ≤ 0.001). The Pearson’s r for accumulated 

precipitation and leaf fall was as high as 0.973 (the community as a whole 2007, P ≤ 

0.001) and as low as 0.612 (boxelder 2010, P ≤ 0.001).  

Table 39: Correlation between the autumn phenophase of leaf coloration and the accumulated 
precipitation, by year 

2007 2008 2009 2010 2011 2012 
BASSWOOD Pearson Correlation.951** .951** .834** .686** .936** .458

Sig. (2-tailed) .000 .000 .000 .000 .000 .116
N 30 17 17 22 25 13

WHITE ASH Pearson Correlation.889** .921** .849** .872** .954** .904**

Sig. (2-tailed) .000 .000 .000 .000 .000 .000
N 21 17 18 18 17 9

WHITE OAK Pearson Correlation.902** .965** .910** .752** .922** .673*

Sig. (2-tailed) .000 .000 .000 .000 .000 .012
N 29 17 19 22 26 13

RED OAK Pearson Correlation.848** .918** .940** .609** .875** .807**

Sig. (2-tailed) .000 .000 .000 .003 .000 .000
N 29 17 20 22 25 14

BOXELDER Pearson Correlation.937** .955** .740** .567** .721** .834**

Sig. (2-tailed) .000 .000 .001 .007 .000 .000
N 28 17 17 21 25 13

COMMUNITYPearson Correlation.943** .965** .874** .781** .956** .516
Sig. (2-tailed) .000 .000 .000 .000 .000 .071
N 30 17 18 22 25 13

**. Correlation is significant at the 0.01 level (2-tailed). 
*. Correlation is significant at the 0.05 level (2-tailed). 
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Table 40: Correlation between the autumn phenophase of leaf fall and the accumulated precipitation, 
by year 

  2007 2008 2009 2010 2011 2012 
BASSWOOD Pearson Correlation.934** .913** .846** .648** .910** .739**

Sig. (2-tailed) .000 .000 .000 .000 .000 .000
N 32 19 18 25 27 24

WHITE ASH Pearson Correlation.956** .899** .904** .697** .900** .759**

Sig. (2-tailed) .000 .000 .000 .000 .000 .000
N 21 17 20 22 18 24

WHITE OAK Pearson Correlation.841** .923** .975** .919** .893** .971**

Sig. (2-tailed) .000 .000 .000 .000 .000 .000
N 35 25 25 32 32 24

RED OAK Pearson Correlation.835** .910** .950** .935** .869** .926**

Sig. (2-tailed) .000 .000 .000 .000 .000 .000
N 38 25 25 31 30 24

BOXELDER Pearson Correlation.840** .881** .961** .612** .891** .968**

Sig. (2-tailed) .000 .000 .000 .001 .000 .000
N 29 20 21 24 27 24

COMMUNITYPearson Correlation.973** .924** .924** .762** .930** .814**

Sig. (2-tailed) .000 .000 .000 .000 .000 .000
N 35 24 25 31 30 24

**. Correlation is significant at the 0.01 level (2-tailed). 
*. Correlation is significant at the 0.05 level (2-tailed). 
 

6.3.4	Correlation	between	phenology	and	day	length	
Table 41 shows the correlation between spring phenology and day length and 

Tables 42 and 43 show the correlations between autumn phenology and day length. Both 

spring and autumn phenologies of individual species and the community as a whole 

showed strong associations with day length. The spring phenology of white ash was 

positively correlated with day length, with the highest Pearson’s r (0.926, P ≤ 0.01), and 

the spring phenology of boxelder was positively correlated with day length, with the 

lowest Pearson’s r (0.716, P ≤ 0.01). In contrast to the spring phenology, the autumn 

phenology of white oak was negatively correlated with day length, with the highest 

Pearson’s r (leaf coloration: -0.880; leaf fall: -0.920, P ≤ 0.01). Similar to spring 



www.manaraa.com

117 

 

 

 

phenology, the autumn phenology of boxelder was negatively correlated with day length, 

with the lowest Pearson’s r (leaf coloration: -0.716; leaf fall: -0.869, P ≤ 0.01). Generally, 

the associations between leaf fall and day length were slightly stronger than the ones 

between leaf coloration and day length. 

Table 41: Correlation between spring phenology and day length 

  DAY LENGTH
BASSWOOD Pearson Correlation .870**

Sig. (2-tailed) .000

N 137

WHITE ASH Pearson Correlation .926**

Sig. (2-tailed) .000

N 157

WHITE OAK Pearson Correlation .870**

Sig. (2-tailed) .000

N 145

RED OAK Pearson Correlation .857**

Sig. (2-tailed) .000

N 131

BOXELDER Pearson Correlation .716**

Sig. (2-tailed) .000

N 98

COMMUNITY Pearson Correlation .907**

Sig. (2-tailed) .000

N 151
**. Correlation is significant at the 0.01 level (2-tailed). 
 

Table 42: Correlation between the phenophase of leaf coloration and day length 

  DAY LENGTH
BASSWOOD Pearson Correlation -.867**

Sig. (2-tailed) .000

N 124

WHITE ASH Pearson Correlation -.868**

Sig. (2-tailed) .000
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N 97

WHITE OAK Pearson Correlation -.880**

Sig. (2-tailed) .000

N 126

RED OAK Pearson Correlation -.865**

Sig. (2-tailed) .000

N 127

BOXELDER Pearson Correlation -.848**

Sig. (2-tailed) .000

N 120

COMMUNITY Pearson Correlation -.906**

Sig. (2-tailed) .000

N 125
**. Correlation is significant at the 0.01 level (2-tailed). 
 

Table 43: Correlation between the phenophase of leaf fall and day length 

  DAY LENGTH
BASSWOOD Pearson Correlation -.882**

Sig. (2-tailed) .000

N 145

WHITE ASH Pearson Correlation -.888**

Sig. (2-tailed) .000

N 122

WHITE OAK Pearson Correlation -.920**

Sig. (2-tailed) .000

N 173

RED OAK Pearson Correlation -.907**

Sig. (2-tailed) .000

N 173

BOXELDER Pearson Correlation -.869**

Sig. (2-tailed) .000

N 145

COMMUNITY Pearson Correlation -.920**

Sig. (2-tailed) .000

N 169
**. Correlation is significant at the 0.01 level (2-tailed). 
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6.3.5	Correlation	between	phenology	and	light	intensity	
Table 44 shows the correlation between spring phenology and light intensity, and 

Tables 44 and 45 show the correlations between autumn phenology and light intensity. 

Only the spring phenology of red oak showed a positive association with light intensity 

(0.215, P ≤ 0.05). Similar to spring phenology, the leaf coloration of red oak and 

boxelder showed a slight negative relationship with light intensity (-0.252 and -0.236, P ≤ 

0.05, respectively). In contrast to spring phenology and the phenophase of leaf coloration, 

the phenophase of leaf fall showed a moderate relationship with light intensity. The 

Pearson’s r values were -0.307 (basswood, P ≤ 0.01), -0.508 (white oak, P ≤ 0.001), -

0.512 (red oak, P ≤ 0.001), -0.396 (boxelder, P ≤ 0.001), and -0.398 (the community as a 

whole, P ≤ 0.001). Only the leaf fall of white ash shows no significant relationship with 

light intensity.  

Table 44: Correlation between spring phenology and light intensity 

 LIGHT INTENSITY
BASSWOOD Pearson Correlation .141

Sig. (2-tailed) .139
N 111

WHITE ASH Pearson Correlation .151
Sig. (2-tailed) .094
N 125

WHITE OAK Pearson Correlation .140
Sig. (2-tailed) .131
N 118

RED OAK Pearson Correlation .215*

Sig. (2-tailed) .028
N 105

BOXELDER Pearson Correlation .040
Sig. (2-tailed) .725
N 79

COMMUNITYPearson Correlation .143
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Sig. (2-tailed) .117
N 122

**. Correlation is significant at the 0.01 level (2-tailed). 
*. Correlation is significant at the 0.05 level (2-tailed). 

Table 45: Correlation between the phenophase of leaf coloration and light intensity 

 LIGHT INTENSITY
BASSWOOD Pearson Correlation -.176

Sig. (2-tailed) .142
N 71

WHITE ASH Pearson Correlation .003
Sig. (2-tailed) .981
N 60

WHITE OAK Pearson Correlation -.195
Sig. (2-tailed) .096
N 74

RED OAK Pearson Correlation -.252*

Sig. (2-tailed) .031
N 74

BOXELDER Pearson Correlation -.236*

Sig. (2-tailed) .049
N 70

COMMUNITYPearson Correlation -.125
Sig. (2-tailed) .295
N 72

**. Correlation is significant at the 0.01 level (2-tailed). 
*. Correlation is significant at the 0.05 level (2-tailed). 

Table 46: Correlation between the phenophase of leaf fall and light intensity 

 LIGHT INTENSITY
BASSWOOD Pearson Correlation -.307**

Sig. (2-tailed) .006
N 78

WHITE ASH Pearson Correlation -.156
Sig. (2-tailed) .206
N 67

WHITE OAK Pearson Correlation -.508**

Sig. (2-tailed) .000
N 95

RED OAK Pearson Correlation -.512**
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Sig. (2-tailed) .000
N 93

BOXELDER Pearson Correlation -.396**

Sig. (2-tailed) .000
N 82

COMMUNITYPearson Correlation -.398**

Sig. (2-tailed) .000
N 92

**. Correlation is significant at the 0.01 level (2-tailed). 
*. Correlation is significant at the 0.05 level (2-tailed). 
 

6.3.6	Correlation	between	phenology	and	wind	
Table 47 illustrates the correlation between spring phenology and daily wind 

speed and direction, and Tables 48 and 49 show the correlations between autumn 

phenology and daily wind speed and direction. There was no significant relationship 

between phenology and daily wind speed and direction except for the leaf fall of red oak, 

which showed a weak positive correlation with daily wind speed (0.195, P ≤ 0.05). 

Table 47: Correlation between spring phenology and wind 

 WIND SPEEDWIND DIRECTION 
BASSWOOD Pearson Correlation -.021 -.021 

Sig. (2-tailed) .818 .822 
N 119 119 

WHITE ASH Pearson Correlation -.070 -.052 
Sig. (2-tailed) .421 .549 
N 136 136 

WHITE OAK Pearson Correlation -.085 -.092 
Sig. (2-tailed) .344 .306 
N 126 126 

RED OAK Pearson Correlation -.024 -.039 
Sig. (2-tailed) .800 .683 
N 113 113 

BOXELDER Pearson Correlation -.030 .115 
Sig. (2-tailed) .786 .290 
N 87 87 

COMMUNITYPearson Correlation -.054 -.088 
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Sig. (2-tailed) .542 .319 
N 130 130 

**. Correlation is significant at the 0.01 level (2-tailed). 
*. Correlation is significant at the 0.05 level (2-tailed). 

Table 48: Correlation between the phenophase of leaf coloration and wind 

 WIND SPEEDWIND DIRECTION 
BASSWOOD Pearson Correlation .024 .134 

Sig. (2-tailed) .805 .161 
N 111 111 

WHITE ASH Pearson Correlation -.067 .036 
Sig. (2-tailed) .526 .736 
N 91 91 

WHITE OAK Pearson Correlation .042 .061 
Sig. (2-tailed) .661 .522 
N 113 113 

RED OAK Pearson Correlation .042 .110 
Sig. (2-tailed) .655 .245 
N 113 113 

BOXELDER Pearson Correlation .050 .145 
Sig. (2-tailed) .606 .135 
N 108 108 

COMMUNITYPearson Correlation .017 .107 
Sig. (2-tailed) .862 .259 
N 112 112 

**. Correlation is significant at the 0.01 level (2-tailed). 
*. Correlation is significant at the 0.05 level (2-tailed). 

Table 49: Correlation between the phenophase of leaf fall and wind 

 WIND SPEED WIND DIRECTION 
BASSWOOD Pearson Correlation .098 .120 

Sig. (2-tailed) .286 .189 
N 121 121 

WHITE ASH Pearson Correlation .062 .134 
Sig. (2-tailed) .545 .189 
N 98 98 

WHITE OAK Pearson Correlation .124 .139 
Sig. (2-tailed) .133 .090 
N 149 149 

RED OAK Pearson Correlation .195* .113 
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Sig. (2-tailed) .017 .170 
N 149 149 

BOXELDER Pearson Correlation .085 .076 
Sig. (2-tailed) .355 .405 
N 121 121 

COMMUNITY Pearson Correlation .107 .146 
Sig. (2-tailed) .199 .080 
N 145 145 

**. Correlation is significant at the 0.01 level (2-tailed). 
*. Correlation is significant at the 0.05 level (2-tailed). 
 

6.3.7	Regression	models	for	phenology	and	microclimatic	factors	

6.3.7.1	Downer	Woods	

Spring	phenological	progression	models	

Table 50 lists spring phenological progression models for each individual species 

as well as for the community as a whole. The models were built to summarize and predict 

how the leading climatic factors influence phenological progress. In spring models, 

accumulated growing degree days (AGDD) and day length served as explanatory 

variables.  

According to the spring phenological progression model, when day length is held 

constant and AGDD increases 100 degree-days, the spring phenology of the community 

as a whole develops through nearly one phenophase. When AGDD is held constant and 

day length increases 100 minutes, the spring phenology of the community as a whole 

develops through nearly two phenophases. The model explains 92.6% of the development 

of spring phenology of the community as a whole. The standard error of the estimate is 

approximately half a phenophase. RMSE and MAE by day are 5.5 days and 4.5 days. 

(Note: RMSE (root mean squared error) and MAE (mean absolute error) were calculated 
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not only by phenophase level unit, but also by day. Here, I will focus on RMSE and MAE 

by day, because these results can be easily compared with the results from other studies. )  

When day length is held constant and AGDD increases 100 degree-days, the 

spring phenology of individual species develops through nearly 0.867(±0.561) 

(basswood), 0.634(±0.570) (white ash), 0.841(±0.586) (red oak), 0.868 (±0.415) (white 

oak), and 1.445(±0.504) (boxelder) phenophases. When AGDD is held constant and day 

length increases 100 minutes, the spring phenology of individual species develops 

through nearly 1.620(±0.561) (basswood), 2.608(±0.570) (white ash), 1.733(±0.586) (red 

oak), 1.088(±0.415) (white oak), and 0.851(±0.504) (boxelder) phenophases. The models 

explain as much as 93.4% (white oak) and as little as 87.9% (red oak) of the progression 

of spring phenology for individual species. 



www.manaraa.com

 

 

 

 

125

Table 50: Spring phenological progression models 

Species Model R2 Std. error of the 
estimate 

Sig. RMSE by 
phenophase 

MAE by 
phenophase 

RMSE by 
day 

MAE by 
day 

Basswood ஻ܻௐ,ௌ௉ ൌ .867 ∗ ܦܦܩܣ ൅ 1.620
∗ ܮܦ െ 1154.442 

.899 56.104 .000 55.489 46.370 5.5 4.5 

White ash ௐܻ஺,ௌ௉ ൌ 0.634 ∗ ܦܦܩܣ ൅ 2.608
∗ ܮܦ െ 1998.870 

.922 56.951 .000 56.393 45.650 5.2 4.1 

Red Oak ோܻை,ௌ௉ ൌ .841 ∗ ܦܦܩܣ ൅ 1.733 ∗ ܮܦ
൅ 126.084

.879 58.603 .000 57.930 48.074 5.9 4.8 

White Oak ௐܻை,ௌ௉ ൌ .868 ∗ ܦܦܩܣ ൅ 1.088
∗ ܮܦ െ 715.651

.934 41.520 .000 41.091 32.505 5.4 4.0 

Boxelder ஻ܻ௑,ௌ௉ ൌ 1.445 ∗ ܦܦܩܣ ൅ .851 ∗ ܮܦ
െ 449.806

.892 50.398 .000 49.622 40.776 4.5 3.5 
 

Community ஼ܻெ,ௌ௉ ൌ .720 ∗ ܦܦܩܣ ൅ 1.996
∗ ܮܦ െ 1458.872

.926 50.574 .000 42.070 50.069 5.1 4.3 

*RMSE: root mean squared error; MAE: mean absolute error; AGDD: accumulated growing degree days; DL: day length 
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Autumn	phenological	progression	models		

Tables 51 and 52 list autumn phenology of leaf coloration and fall progression 

models for each individual species, as well as for the community as a whole. In the 

autumn models, accumulated chilling degree-days (ACDD) and day length served as an 

explanatory variable. 

The predictive power of the autumn model is not as good as that for spring with 

75.8% (boxelder, leaf coloration) to 89.1% (white oak, leaf fall) of the progression 

explained. According to the autumn phenological progression models (Tables 51 and 52), 

when day length is held constant and ACDD increases 100 degree-days, leaf coloration 

and fall of the community as a whole develops approximately 0.1 phenophase and 0.14 

phenophase, respectively. The two models explain 82.8% of the development of leaf 

coloration and 84.7% of the development of leaf fall. The standard errors of the estimate 

are approximately 0.12 and 0.14 phenophases, respectively. RMSE and MAE are 4.7 

days and 3.6 days, 6.3 days and 4.8 days, respectively. 

The models for boxelder had the lowest goodness of fit for leaf coloration, 75.8%, 

and basswood for leaf fall, 79.0%, respectively. The models for white oak had the highest 

goodness of fit, 79.6% (leaf coloration) and 89.1% (leaf fall). The influence of ACDD on 

the autumn phenology of individual species varies. In general, the ACDD influenced red 

oak least and boxelder most. When day length is held constant and ACDD increases 100 

degree-days, the leaf coloration of white oak and red oak advances a little more than 0.1 

phenophase, basswood and boxelder advance nearly 0.2 phenophase; the leaf fall of 
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basswood advances less than 0.1 phenophase, red oak, white oak, and boxelder advance 

nearly 0.15 phenophase.  
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Table 51: Progression models for autumn phenology of leaf coloration 

Species Model R2 Std. error of the 
estimate 

Sig. RMSE by 
phenophase 

MAE by 
phenophase 

RMSE by 
day 

MAE by 
day 

Basswood ஻ܻௐ,௅஼ ൌ .189 ∗ ܦܦܥܣ െ .346 ∗ ܮܦ
൅ 1065.304 

.791 14.664 .000 14.489 11.067 5.4 4.3 

White ash ௐܻ஺,௅஼ ൌ െ.103 ∗ ܦܦܥܣ െ .982
∗ ܮܦ ൅ 1567.235 

.764 13.697 .000 13.484 10.3526 4.5 3.5 

Red oak ோܻை,௅஼ ൌ .132 ∗ ܦܦܥܣ െ .372 ∗ ܮܦ
൅ 1070.148

779 13.544 .000 13.384 10.072 5.2 4.0 

White oak ௐܻை,௅஼ ൌ .118 ∗ ܦܦܥܣ െ .440 ∗ ܮܦ
൅ 1128.329

.796 13.466 .000 13.307 10.400 5.2 4.1 

Boxelder ஻ܻ௑,௅஼ ൌ .179 ∗ ܦܦܥܣ െ .345 ∗ ܮܦ
൅ 1047.530

.758 15.101 .000 14.915 11.810 5.2 4.3 

Community ஼ܻெ,௅஼ ൌ .069 ∗ ܦܦܥܣ െ .543 ∗ ܮܦ
൅ 1222.586

.828 11.825 .000 11.684 8.844 4.7 3.6 

*RMSE: root mean squared error; MAE: mean absolute error; ACDD: accumulated chilling degree days; DL: day length 

Table 52: Progression models for autumn phenology of leaf fall 

Species Model R2 Std. error of the 
estimate 

Sig. RMSE by 
phenophase 

MAE by 
phenophase 

RMSE by 
day 

MAE by 
day 

Basswood ஻ܻௐ,௅ி ൌ .092 ∗ ܦܦܥܣ െ .572 ∗ ܮܦ
൅ 1316.904

.790 17.453 .000 17.272 13.400 6.7 5.2 

White ash ௐܻ஺,௅ி ൌ െ.071 ∗ ܦܦܥܣ െ 1.067
∗ ܮܦ ൅ 1693.827

.797 16.285 .000 16.085 11.782 5.1 3.8 

Red oak ோܻை,௅ி ൌ .127 ∗ ܦܦܥܣ െ .253 ∗ ܮܦ
൅ 1066.964 

.862 11.968 .000 11.871 9.050 5.6 4.5 

White oak ௐܻை,௅ி ൌ .151 ∗ ܦܦܥܣ െ .265 ∗ ܮܦ
൅ 1075.775 

.891 11.522 .000 11.423 8.533 4.9 3.9 

Boxelder ஻ܻ௑,௅ி ൌ .165 ∗ ܦܦܥܣ െ .311 ∗ ܮܦ
൅ 1108.487 

.806 15.514 .000 15.353 11.994 5.8 4.8 

Community ஼ܻெ,௅ி ൌ .018 ∗ ܦܦܥܣ െ .678 ∗ ܮܦ
൅ 1401.672

.847 13.859 .000 13.736 10.463 6.3 4.8 

*RMSE: root mean squared error; MAE: mean absolute error; ACDD: accumulated chilling degree days; DL: day length 
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6.3.7.2	Park	Falls	Range	District	

Table 53 lists spring and autumn phenological progression models for basswood 

at the Park Falls study site. In contrast to Downer Woods, AGDD and day length still 

served as explanatory variables in spring models, whereas only day length served as an 

explanatory variable in autumn models. When day length is held constant and AGDD 

increases 100 degree-days, spring phenology of basswood at Park Falls develops 

1.078(±0.413) phenophases, compared to 0.867(±0.561) phenophases for basswood in 

Downer Woods. When day length declines 100 minutes, the leaf coloration of basswood 

at Park Falls develops 1.462(±0.133) phenophases. When day length declines 100 

minutes, the leaf fall of basswood at Park Falls develops 1.036(±0.152) phenophases. 

Table 53: Progression models for spring and autumn phenology of basswood in Park Falls 

Season Model R2 Std. error of the 
estimate 

Sig. 

Spring ܻ ൌ 1.078 ∗ ܦܦܩܣ ൅ 3.826 ∗ ܮܦ
െ 3250.492

.943 41.322 
 

.000 
 

Leaves 
coloration 

ܻ ൌ െ1.462 ∗ ܮܦ ൅ 1911.084 .853 13.336 .000 

Leaf fall ܻ ൌ െ1.036 ∗ ܮܦ ൅ 1688.138 .820 15.161 .000 

*AGDD is accumulated growing degree days; DL is day length. 

 

6.4 Relationships between VI and ground visual phenology 
The scatter plots of VI and ground visual phenology (spring, leaf coloration, and 

leaf fall) in Downer Woods for 2007-2012 period are shown in Figure 28. All of the plots 

can be divided into two parts: a steep lower part and a gentle upper part. According to the 

shape of the plots, the logistic function was employed to acquire the breakpoints, which 

are important to bridge the gap between VI and ground visual phenology.   
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Table 54 summarized the corresponding VI value and phenophase level at each 

breakpoint for both EVI and NDVI and for spring, leaf coloration, and leaf fall. For EVI, 

leaf expansion at phenophase level 627 in spring corresponded to EVI value 0.291; leaf 

full coloration at phenophase level 892 corresponded to EVI value 0.219; and leaf full 

fall at phenophase level 991corresponded to EVI value 0.197. For NDVI, leaf expansion 

at phenophase level 609 in spring corresponded to a NDVI value of 0.513; leaf full 

coloration at phenophase level 888 corresponded to a NDVI value of 0.472; and leaf full 

fall at phenophase level 988 corresponded to a NDVI value of 0.43.  
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Figure 28: Scatter plots between VI and ground visual phenology 

 

Table 54: Summary for the breakpoints on VI and ground visual phenology curve 

VI Season VI value Phenophase level R^2 

Spring 0.291 627 0.951
EVI Leaf coloration 0.219 892 0.777

Leaf fall 0.197 991 0.922
  Spring 0.513 609 0.908
NDVI Leaf coloration 0.472 888 0.721
  Leaf fall 0.43 988 0.764
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The SOS is assigned to the date at which buds are fully open (phenophase level 

390) and the EOS is assigned to the date at which leaves have reached full coloration 

(phenophase level 890). Here, the corresponding VI values to ground visual EOS and 

SOS were extracted (Table 55). Therefore, the corresponding EVI and NDVI for the SOS 

in Downer Woods were 0.201 and 0.403, respectively; and for the EOS were 0.227 and 

0.458. 

Table 55: The corresponding VI to SOS and EOS 

VI values SOS EOS 
EVI 0.201 0.227 
NDVI 0.403 0.458 
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7. Discussion 

This discussion begins with the spring and autumn phenological observations 

taken during this 6-year study (2007-2012) and puts the results into the context of the 

current literature. A detailed discussion of the spring and autumn phenological 

progression and the spatial models developed during this study follows, also in light of 

current research.  

7.1 Spatially and temporally intensive phenological observations 
Compared to most traditional direct observations, this dissertation contributes a 

unique phenological dataset with three exclusive characteristics: 1) high density 

observations both over time and space; 2) intensive spring and autumn phenological 

observations; and 3) an urban woodlot study site. This phenological dataset employs 

direct phenological observations with very high spatial and temporal resolutions at both 

the community and species level. Thus, this dataset provides a level of detail relating to 

phenological development throughout the season that is greater than the more commonly 

reported date-specific phenophases (Donnelly et al., 2006; Estrella & Menzel, 2006; 

Schwartz et al., 2006; Xu & Chen, 2013). In addition, the intensive autumn phenological 

observations and research are in contrast to many phenological studies focusing primarily 

on spring phenological observations (Badeck et al., 2004; Donnelly et al., 2006; 

Schwartz et al., 2006; Caffarra et al., 2011). Finally, the observations were conducted in 

an urban woodlot, so they are distinct from the observations in rural forests, botanical 

gardens, or agricultural fields. 

This phenological dataset covers the entire durations of both spring and autumn 

leaf phenology from autumn 2007 to autumn 2012. Traditionally, direct observations 
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usually record the date or dates on which one or a few specific phenophases occur. For 

example, phenological data from the European International Phenological Network 

included the dates of leaf unfolding, flowering, leaf coloring, etc. (Menzel & Fabian, 

1999). Similarly, first leaf unfolding data were employed from the China Meteorological 

Administration phenological network (Xu & Chen, 2013). The first leaf and first bloom 

of cloned lilac and honeysuckle were used to build spring indices models (Schwartz, 

1997). The phenophases used in most phenological studies are recorded on specific dates 

and are discrete from each other, whereas in this study I used a detailed observation 

protocol consisting of 24 spring phenophase levels and 8 autumn phenophase levels. 

These phenophase levels represent the progression of development from buds visible 

through to leaves fully expanded in spring and from leaf coloration through to leaf fall in 

autumn, thus providing a spring and autumn phenological profile for each season.  

Phenological studies traditionally reported single dates for each phenophase. For 

example, Matsumoto et al. (2003) used the  date of budding (20% buds open) and leaf-

fall (80% leaves fall) for Ginkgo biloba L. in Japan from 1953 to 2000, and Gordo and 

Sanz (2009) employed a plant and animal phenological dataset in Spain for the period 

1943-2003, which also reported the date of individual phenophases, such as flowering, 

leaf unfolding, fruit ripening. Both studies reported a single calendar date at which each 

phenophase occurred. In contrast to this date-specific record for a particular phenophase, 

here I subdivided each of six spring phenophases (Liang et al., 2011), and two autumn 

phenophases into four levels, thus achieving more accurate and detailed phenological 

information for each phenophase through the use of intensive observations and 

recordings. Such high resolution data are crucial for detecting relationships between 
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phenological development and environmental factors, building phenological progression 

models, and bridging the gaps between ground visual phenological data and remote 

sensing data. Having a range of data representing each phenophase allows more of the 

variability around each phenophase to be captured and presented, which results in more 

accurate modeling and allows direct comparisons with remote sensing data, which is 

available in a similar timeframe. 

In addition to the large number of phenophases observed in this study, the 

observation frequency was also more intensive than traditional methods. In general, 

direct observations usually only report the day of the year when critical phenophases 

occur, whereas in this study the progression of the entire season (spring and autumn) was 

recorded by taking bi-daily phenological observations. For example, in a study conducted 

on deciduous trees by Delpierre et al. (2009) in France, phenological observations were 

conducted weekly and only two leaf coloration phase levels (10% yellow leaves and 90% 

yellow leaves) were recorded. Similarly, Morin et al. (2009) employed the dates of leaf 

unfolding from 18 North American temperate tree species at three locations in the United 

States. Again, high resolution data collection permits greater accuracy for 1) subsequent 

phenological model building, by portraying the whole progress of phenology and 2) 

remote sensing data validating, by scaling up from individual tree phenology to 

community phenology. 

Combined with temporally intensive observations, spatially intensive observations 

also were conducted, in line with other studies conducted by Prof. Schwartz’s group 

(Liang & Schwartz, 2009; Hanes & Schwartz, 2011; Liang et al., 2011). Spatially 
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intensive observations can be used to: 1) fully examine community level as well as 

individual level phenology; and 2) build ground observation metrics corresponding to 

satellite pixels to fill the gaps between ground visual observations and remote sensing 

phenology. 

Although high resolution data collection was a main focus of this study, the length 

of the time series was limited due to the nature of a PhD dissertation. Long time series of 

30+ years are more common in places like Europe and Asia, where phenological 

recording has been ongoing for many years (decades to centuries) (Sparks & Carey, 1995; 

Walther et al., 2002; Menzel et al., 2005). For centuries, phenology has been observed 

and recorded by naturalists and widely used for managing agricultural activities, and for 

presenting the calendar of seasons in both Europe and Asia (Schnelle & Yang, 1965; Zhu 

& Wan, 1973). Since phenology has been recognized as a useful indicator of recent 

climate change (Schwartz, 2003; Rosenzweig et al., 2008), the need to identify and 

establish suitable data sets has become a priority. However, in order to draw meaningful 

conclusions relating to climate change from phenological observations, the length of the 

data set is important. The longer the data series, the more confident one can be regarding 

the relationship between climate and phenology. 

European countries and China established nationwide phenological networks in 

the mid-20th century (Chen, 2003; Menzel et al., 2006) and most phenological studies 

employed spatially extensive observations (Schwartz & Hanes, 2010; Caffarra et al., 

2011; Xu & Chen, 2013) and across study areas, much larger than the ones in this study. 

There are tradeoffs between observation intensity/density and length/scale in 
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phenological research. Here, spatially and temporally intensive observations were 

conducted to further understand the relationship between phenological progression 

throughout the season (especially autumn phenological development) and environmental 

factors, thus providing more detailed information than one date per phenophase. 

7.2 Spring and autumn phenology 
A discussion of spring phenology at both Wisconsin sites, Downer Woods (urban 

woodlot) (2008-2012) and Park Falls (rural forest) (2008-2010) is followed by a 

discussion of autumn phenology at both study sites. The growing season (start, end, and 

length) in Downer Woods is then examined.  

7.2.1	Spring	phenology	
In any temperate deciduous woodland, some species leaf out before others (Lopez 

et al., 2008) and not all trees of the same species leaf out at the same time (Seiwa, 1999), 

which could ultimately influence the distribution, structure, and function of woodlands. 

The current data suggests that considerable variation exists both within individual species 

(intraspecific variation) and also between different species (interspecific variation). Here, 

I focus on interspecific variation, with intraspecific variation discussed in the section on 

phenological spatial models (section 7.4).  

In Downer Woods, boxelder was the first species to green up and (approximately 

two weeks later) advance to full leaf development. In early spring, basswood and oaks 

also started to leaf out early whereas white ash was the last species greening up. White 

oak was the latest species to reach full leaf expansion in late spring, whereas basswood, 

red oak, and white ash reached full leaf expansion at very similar times. These results 

suggest that boxelder, which is a shrubby species of the middle canopy layer, leaves out 
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before the upper canopy closes and reduces light levels lower in the canopy, whereas 

oaks, which are the tallest species with the largest canopies in the woods, receive more 

light and are the last ones reaching canopy closure. Basswood and white ash, which are 

also tall tree species, reach full leaf development much later than boxelder. These results 

agree with the findings of Lopez et al. (2008) in southern Appalachian forests, which 

indicated that on average, bud burst of early leafing species (e.g., Acer rubrum, Carpinus 

caroliniana ) was 24 days earlier than late leafing species (e.g., Quercus rubra, Tilia 

Americana). In addition, before canopy closure was reached, early leafing species had 

received 45-80% of their growing season light requirements in contrast to 8-15% for late 

leafing species. Thus, the timing of leaf-out is influenced by position in the overall 

canopy. 

At Park Falls, spring phenology of basswoods, which is the only species common 

to both study sites, reached phenophase level 290 (buds fully swollen) and phenophase 

level 490 (leaves fully out) 16 and 11 days later than basswoods in Downer Woods in the 

same period (2008-2010). The later start to the basswood growing season in Park Falls 

was expected as the site is further north and experiences cooler temperatures than 

Downer Woods.  

The timing of tree phenology in Downer Woods is within the range of similar 

deciduous trees in other areas in the US. For example, Richardson et al. (2006) calculated 

sugar maple leaves reaching 50% of their final length in the Hubbard Brook 

Experimental Forest (43º56ʹN 71º45ʹW) during the period 1989-2002 on DOY 134, 

whereas the community in Downer Woods reached phenophase level 650 (leave 



www.manaraa.com

139 

 

 

 

expansion level between 50% and 75% of mature leaves) on DOY 143. Both sites are 

located in the humid continental climate zone of the eastern United States and both 

consist of temperate deciduous forest/woodlot. Differences in dominant species, regional 

climates (especially spring temperatures), and research durations between the two study 

sites may explain the differences in timing of leaf full expansion. 

Morin et al. (2009) simulated white ash leaf unfolding in OH, 41º33ʹN 84º09ʹW 

during the 1901-2000 period for white ash on DOY 138, white oak on DOY 134 (MA, 

42º53ʹN 72º09ʹW), and red oak on DOY 140(MA, 42º53ʹN 72º09ʹW). In Downer Woods, 

white ash reached phenophase level 550 (50-90% leaves fully unfolded) on DOY 136, 

white oak on DOY 139, and red oak on DOY 134. Although Downer Woods and other 

study sites are in different places in the eastern United States and the time series are 

different, the results are within a similar range, indicating that the phenology of similar 

species may occur within a limited range even under different locations, time spans, and 

climates.  

7.2.2	Autumn	phenology	
The average duration (2007-2012) of the autumn season in Downer Woods was 

more or less one month, starting in mid-September and ending in mid-October. In 

contrast to the large variation in the start of green up, all six species started yellowing at a 

similar time: DOY 263 for basswood, hophornbeam, and white ash and DOY 264 for red 

oak and white oak. White ash was the first species to reach full leaf fall, followed by 

basswood, then by boxelder and hophornbeam, and finally by white oak and red oak. 

This was an interesting result given that all species began to color at approximately the 

same time. 



www.manaraa.com

140 

 

 

 

At Park Falls, autumn phenology of basswoods reached phenophase level 810 

(leaf coloration) and phenophase level 990 (full leaf fall) 4 and 8 days earlier than in 

Downer Woods in the same period (2010 and 2012). The early autumn phenology in Park 

Falls was expected as the site is further north and experiences cooler temperatures than 

Downer Woods. Richardson et al. (2006) examined average 50% leaves fall for sugar 

maple in the Hubbard Brook Experimental Forest (43º56ʹN 71º45ʹW) during the period 

1989-2002 on DOY 291, whereas the community in Downer Woods reached phenophase 

level 950 (10-50% leaf fall) on DOY 286. The Hubbard Brook study site has a slightly 

longer growing season at least for sugar maple than Downer Woods, perhaps as a result 

of differences in species, time spans of study, and local climate.  

7.2.3	Growing	season	
All of the species studied in Downer Woods showed a non-statistically significant 

trend towards an earlier start to the growing seasons at the end of the time period (2008-

2012) than at the beginning. Even though the trend is not statistically significant, it 

should not be completely dismissed because the lack of significance is probably a 

function of the short length of the time series, in contrast to other data sets reported in the 

literature. To some extent, this result is in agreement with other studies documenting 

spring advancement (Root et al., 2003; Menzel et al., 2006; Parmesan, 2007), which are 

mainly attributed to rising air temperatures.  

All of the studied species in Downer Woods showed a trend towards an earlier 

end to the growing seasons at the end of time period (2008-2012) than at the beginning. 

Among species, the trends for basswood, white ash, and the community were statistically 

significant at the 0.05 level and that for red oak was statistically significant at the 0.10 
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level. In general, the EOS is not as well documented as the SOS, and it typically shows 

more variation than SOS. Richardson et al. (2006) detected no significant autumn trend 

for any model and species combination during the 1957-2004 period. And Menzel et al. 

(2006) detected no significant leaf coloring trend across 21 European countries during 

1971-2000. In contrast, Chen and Xu (2012) detected a significant delay at a rate of 2.2 

days per decade of the end of the growing season (the end date of leaf fall) in the 

temperate zone of China during 1986-2005. However, possibly due to the hot summers in 

2010-2012, which may introduce summer drought, the autumn phenology of basswood, 

white ash, and red oak in Downer Woods significantly advanced. This evidence 

reinforces notions of the inherent variability and complexity of autumn phenology.  

The length of the growing season (LOS) in Downer Woods appears to be 

contracting for most of the studied species (basswood, red oak, white ash) and for the 

community as a whole, because the EOS is advancing more rapidly than the SOS. The 

trends in the LOS were not in agreement with other studies of LOS (Menzel et al., 2006; 

Delpierre et al., 2009; Jeong et al., 2011; Chen & Xu, 2012), which suggests in the 

context of global warming, that phenological responses are sensitive to local climate and 

environmental change. There are three possible reasons for the differences in the EOS 

and LOS trends of this and other studies. First, regional heterogeneity can contribute to 

variety of climate and environment changes as well as different responses of vegetation 

to climate and environment. Second, autumn phenology is more variable than spring 

phenology and, as a consequence, the results are more diverse. Finally, it is difficult to 

infer long-term trends with five years’ data, so further observations and retrospective 

modeling are both needed to achieve more consistent results.   
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7.2.4	Implications	of	changing	phenology	
Both positive and negative consequences may be induced by the advancement of 

spring phenology. Early budburst means that photosynthesis of plants starts early, leading 

to greater carbon assimilation and greater primary production, which could lead to 

reduced carbon dioxide levels in the atmosphere and increased agricultural and forestry 

production. At the same time, early budburst may increase the risk of late frost damage, 

which can lead to a reduction in agricultural productivity and may be especially 

detrimental to fruit production.  

Early spring phenology could introduce mismatches in phenology between 

interdependent species or between species and their abiotic environment (Stenseth & 

Mysterud, 2002; Donnelly et al., 2011). For example, warm temperature may lead to 

early transformations from caterpillar to butterfly, which may reduce the availability of 

food for migratory birds. Many of these timing mismatches could be negative for already 

established relationships between plants and pollinators, predators and prey. In Europe, 

scientists reported that rising winter temperature may result in chilling requirements not 

being fulfilled (Caffarra & Donnelly, 2011),but this is probably not the case in Wisconsin 

due to the long cold winters (Schwartz & Hanes, 2010). Negative consequences may also 

be induced by the advancement of autumn phenology. Early leaf coloration and early leaf 

fall means that photosynthesis of plants ends early, possibly leading to less carbon 

sequestration and less primary production. 

Two possible applications could be related to the intensive observations 

conducted in this study. Two types of ground visual phenological data are absent in the 

United States: 1) Long-term visual ground observation phenological data, which can be 
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valuable in tracking the long-term impacts of climate change on phenology, and 2) 

spatially and temporally intensive observational phenological data in different biomes, 

climate regions, and land cover types, which can be: a) a valuable source of phenological 

information at the community and individual species level; and b) a valuable validation 

for remote sensing phenology due to its community level phenological information, 

which can be more easily combined with integrated remote sensing signals.     

7.3 Phenological progression models 
Based on the analysis of the relationships between spring and autumn phenology 

and four groups of environmental factors (temperature, moisture, light, and wind), spring 

and autumn phenological progression models for each individual species and the 

community as a whole were built. These are empirical models based on data which 

represents the complete profile of leaf phenology, in contrast to the more traditional date-

specific approach to representing a particular phenophase (such as budburst, leaf 

coloration).  

7.3.1	Spring	phenological	progression	models	
The results of the statistical analysis showed that spring phenological 

development for each species and the community as a whole was highly correlated with 

air temperature, soil temperature, accumulated growing degree days, water balance, day 

length, and accumulated precipitation. Of these four groups of environmental factors, 

spring phenological development showed the highest correlation with accumulated 

growing degree days. This suggests that accumulated growing degree days is the critical 

driving factor in phenological development, consistent with the results of other studies on 

date-specific spring phenophase(s) (Chuine, 2000; Schwartz et al., 2006; Fu et al., 2012; 
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Xu & Chen, 2013) . These results confirm that whether a date-specific or a more 

comprehensive development approach is used to represent spring phenophases, 

accumulated growing degree days is the most important driving factor. To date, most 

phenological models have been based on individual species and have been built only for 

one specific phenophase instead of for the entire duration of phenological development. 

For example, most spring phenological models are based on a single bud burst date  

(Chuine, 2000; Caffarra et al., 2011; Fu et al., 2012), or a single first leaf/leaf unfolding 

date (Schwartz et al., 2006; Vitasse et al., 2011; Xu & Chen, 2013), whereas in reality 

these phenophases last longer than a specific date and the entire phenological 

development is a consecutive process.  

In order to address these two issues, I used a more sophisticated approach, which 

took into account the full duration of phenological development. The major advantage of 

the spring/autumn phenological progression models used in this study is that, instead of 

using a single point for the start/end of the growing season, these models depict a whole 

profile for spring development and give a more accurate and detailed representation of 

phenology, which in turn can be used to set up more accurate phenological parameters for 

carbon simulation models and climate models. The main drawback of phenological 

progression models may be the amount of time required to make phenological 

observations.  

Among phenological models, only those constructed by Richardson et al. (2006) 

for three hardwood species in the Hubbard Brook Experimental Forest considered the 

development of both spring and autumn phenology. Richardson et al. (2006) used 14 
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years’ data (1989-2002) whereas this study used 6 years’ data (2007-2012). The length of 

the data set is the main limitation of the current study, which was constrained by the 

annual cycle attribute of phenological observations and the length of the PhD program. 

This study is an initial effort to set up Downer Woods as a long-term phenological 

observation site, which has advantages due to its accessibility. It can be anticipated that 

with a longer time series, more meaningful trends and pheno-climatic information can be 

detected and achieved.  

Richardson et al. (2006) analyzed three hardwood species (sugar maple, 

American beech, and yellow birch) whereas I sampled seven tree species according to the 

woodlot profile, presenting a more representative picture of phenology for the community 

and individual species. Richardson et al. (2006) used an observation index ranging from 

0 (dormant, no leaves) to 4 (full, green canopy) whereas I use a detailed observation 

protocol with a total of 32 phenophase levels. Richardson et al. (2006)’s data was 

recorded weekly, whereas I recorded observations every other day. These detailed 

observations depict phenological processes more accurately since the major phenological 

transitions take place in a few weeks; weekly observations may not be frequent enough to 

capture the rapid changes of phenology. Richardson et al. (2006) used nine sample plots 

across the Hubbard Brook valley with elevations ranging from ~250 to 825 m ASL and at 

each plot there were three sample trees for each study species. This study used 27 evenly 

distributed plots without significant elevation difference, and at each site there are four 

sample trees. This data has greater spatial and temporal resolution and can more 

accurately describe the overall development of phenology, potentially scaling up to 

community level for direct comparison with satellite data.  
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Richardson et al. (2006) built and compared four types of logistic growth models 

of spring and autumn phenology respectively. Model 1 used day of year (DOY), model 2 

used accumulated degree-days (HDD for spring phenology; CDD for autumn phenology), 

model 3 used both DOY and accumulated degree-days, and model 4 used HDD and CDD 

as input parameters. According to the correlation analysis and the regression performance 

among phenology and the four groups of climatic factors, this study built general linear 

models of spring and autumn phenology, respectively. Accumulated growing degree-days 

(AGDD) and day length was used as the explanatory variable in the spring models. 

The spring phenological progression models developed here, which portrayed the 

complete duration of spring phenology in Downer Woods, performed well as indicated 

by the R2 values, which ranged from 0.879 (red oak) to 0.934 (white oak). These values 

are similar to those reported by Richardson et al. (2006), describing the progress of 

spring phenology at Hubbard Brook (R2 values ranging from 0.92 to 0.93). Accumulated 

growing degree days combined with day length showed a strong ability to simulate spring 

phenological development for both individual species and the community as a whole.  

7.3.2	Autumn	phenological	progression	models	
The results of the correlation analysis for autumn phenology showed that the 

progression of both leaf coloration and leaf fall for each species and for the community as 

a whole were strongly correlated with air temperature, soil temperature, accumulated 

chilling degree days, and day length. Of these four groups of environmental factors, 

autumn phenological development showed the highest correlations with accumulated 

chilling degree days and day length. This suggests that accumulated chilling degree days 

and day length are the critical driving factor in phenological development in autumn, 
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indicating that, phenologically, chilling is as important in autumn as heat is in spring. 

Because of the well-documented variability in autumn phenology, usually linked to 

photoperiod length, studies of autumn phenology reflect different opinions about the 

driving factor/factors, and so few models have been built previously to simulate autumn 

phenology. 

Nearly all previously created autumn phenological models concentrated on 

autumn phenological events. For example, in their autumn phenological model, Doi and 

Takahashi (2008) used the date when most of the leaves were colored and 80% of the 

phase leaf fall was reached for Ginkgo biloba (Ginkgo) and Acer palmatum (Japanese 

maple). Similarly, Estrella and Menzel (2006) used the date when 50% of all leaf 

coloring for horse chestnut, beech, birch, and oak was reached, and Delpierre et al. (2009) 

used the date when 90% of European beech and oak showed yellow leaves over 20-50% 

of their crowns. Similar to the spring phenological progression models, the autumn 

phenological progression models built in this study simulated the development of the 

entire duration of autumn phenology for each species as well as for the community as a 

whole. Accumulated chilling degree-days (ACDD) and day length was the main 

explanatory variable in these models. 

The autumn phenological models developed in this study did not perform as well 

as the spring models, as indicated by R2 values, which ranged from 0.764 (white ash) to 

0.891 (white oak). The performance of the autumn model for white ash was possibly 

enhanced by the potential influence of photoperiod. Models 2, 3, and 4 of Richardson et 

al. (2006) generally performed better than my models with R2 values ranging from 0.87 
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to 0.90. However, accumulated chilling degree days may still be considered a strong 

parameter for simulating autumn phenological development for individual species, except 

perhaps for white ash and the community as a whole.  

Generally speaking, my models performed well for spring phenology, whether for 

individual species or the community as a whole, and they performed best for oaks and 

moderately well for other species in autumn. The models can serve to 1) examine the 

interactions between spring and autumn phenology and environmental factors; 2) predict 

the impact of future climate change on ecosystems; and 3) establish more concise start 

and end points of growing seasons for carbon simulation models and climate models.    

7.4 Spatial regression models 
Usually, spatial patterns of phenology are examined at global, continental, or 

regional scales. Schwartz et al. (2006) employed spring index models to reconstruct 

spring phenology in the temperate Northern Hemisphere during 1955-2002 and 

confirmed that although a universal earlier onset of spring was detected, different regions 

(such as North America, Western Europe, and East Asia) showed different spatial 

patterns of changes in the timing of the onset of spring. At a regional level, Xu and Chen 

(2013) employed unified forcing and chilling phenology models, using first leaf 

unfolding data of four tree species (Salix matsudana, Populus simonii, Ulmus pumila,and 

Prunus armeniaca) combined with daily mean temperature to rebuild spatial patterns of 

spring phenology across northern China over 1960-2009.  

In the current study, spatial regression models for all phenophase levels of two 

dominant species (basswood and white ash) in Downer Woods were built to examine 
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spatial patterns in phenology at a site scale. No similar studies have been published to 1) 

permit detection of spatial patterns of phenology at the site scale, and/or 2) examine 

spatial patterns for each phenophase level in a consecutive sequence. The advantages of 

these spatial regression models are that 1) they facilitate detection of phenological 

variations of dominant trees at a site scale and provide an opportunity to examine the 

influence of local climate and local environmental factors, and 2) they allow examination 

of the influence of local climate and environmental factors on different stages of 

phenology progression. 

7.4.1	Spring	spatial	regression	models	
Spring spatial regression models for basswood and white ash were built for a total 

of 21 phenophase levels in spring (190: buds fully visible – 675: full leaf expansion). 

Differences in the spatial patterns of spring phenology have been revealed between these 

two dominant tree species in Downer Woods. Three of the phenophase levels of 

basswood (210: buds swollen; 650 and 675: leaf expansion levels) and 20 of the 

phenophase levels of white ash showed significant spatial patterns. The analysis revealed 

that the timing of basswood spring phenology responded most to latitude (a proxy for 

temperature), whereas white ash showed a strong response to distance from each site to 

the edge of the study area (another proxy for temperature). However, white ash 

responded to the edge effect temperature gradient during early to mid-spring and to the 

north-south temperature gradient during late spring. The rates of phenological advance of 

white ash imposed by a latitudinally-driven change in temperature and by edge-effect 

temperature change are both greater than those of basswood. These results are surprising, 
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and it was not anticipated that there would be such strong responses to temperature 

gradients imposed by latitude and edge effects in such a small area.  

In general, the models explained 30.2%, 28.6%, and 25.6%, respectively of the 

variation in the spatial pattern of the three spring phenophase levels for basswood. By 

comparison, the models explained from 30.4% (200: buds swollen) to 61.1% (310: buds 

open) of the variation of spatial pattern of the 20 spring phenophase levels of white ash, 

which are generally higher than those of basswood. Latitude, longitude, and edge 

distance are possible proxies for temperature and shelter. A possible future addition to 

this study could be to use land surface temperature from high resolution remote sensing 

data to detect temperature variations within the study area. 

7.4.2	Autumn	spatial	regression	models	
Autumn spatial regression models for basswood and white ash were built for a 

total of eight phenophase levels in autumn (800: leaf coloration – 990: full leaf fall). 

Similar to spring, there were major differences in autumn phenological spatial patterns 

between the two dominant tree species. In contrast to the spring phenophase levels, none 

of the autumn regression models for white ash were significant.  

Two phenophase levels for basswood (890: full leaf coloration; 990: full leaf fall) 

showed significant spatial patterns. The two regression models showed that, in contrast to 

spring phenology, the timing of autumn phenology responded most to longitude 

(probably a proxy for temperature in autumn). The rates of phenological advance from 

west to east were -0.940 and -0.886 days/second, respectively. The models explained 
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29.4% and 33.4%, respectively of the variation in the spatial pattern of the two autumn 

phenophase levels of basswood.  

The north-south temperature gradient and the edge effect temperature gradient 

were more critical in spring, whereas the west-east temperature gradient was more 

important in autumn. An interesting future study would be to compare temperature 

variations over the study area between spring and autumn aided by satellite data, since 

there is no high resolution ground micrometeorological data available.  

7.5 Relationships between remote sensing phenology and ground visual 
phenology 

The relationships between VI from MODIS and community phenology from 

ground observations confirmed that both EVI and NDVI can directly detect the change in 

vegetation phenology from one phenophase to the next, as has been reported by previous 

studies on remote sensing phenology (Reed et al., 1994; Zhang et al., 2003; Pettorelli et 

al., 2005; Delbart et al., 2006; White et al., 2009). Bridging the gap between remote 

sensing data and ground visual phenological data, and determining the biological 

meaning of remote sensing data have always been important issues in phenological 

research (Morisette et al., 2009; Liang et al., 2011). How to scale up ground visual 

phenololgy to comply with satellite matrix data and how to acquire real ground 

phenological information of VI instead of a synoptic view are critical questions in this 

field (Schwartz et al., 2002). 

In order to resolve these issues, and based on Liang et al. (2011)’s research in 

northern Wisconsin, this study  scaled ground individual phenology up to community 

phenology and compared it with MODIS VI for both spring and autumn seasons. 
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Generally, the logistic function fitting of the scatter plots of EVI and phenophase level 

were better than that of NDVI and phenophase level; and the fitting for spring was 

always better than the fitting for autumn (leaf coloration and leaf fall). The results 

showed that EVI can represent spring phenology well until early leaf expansion, and that 

NDVI can also represent spring phenology well until very early leaf expansion. In 

addition, both EVI and NDVI can represent autumn phenology well until the very end of 

leaf coloration and leaf fall. In general, EVI, which was enhanced from NDVI by 

correcting aerosol scattering and adjusting soil influences (Jensen, 2000), does achieve 

better representation of vegetation phenology than NDVI.  

This study filled gaps between remote sensing phenology and ground visual 

phenology in a temperate woodlot and acquired the ground phenological meaning for the 

corresponding VI, which not only affirmed that both EVI and NDVI contain useful 

information for detecting vegetation dynamics, but also determined the potential VI 

values for the ground SOS and EOS as well as the breakpoint VI values, which 

correspond to the end of spring or autumn seasons. The results can be applied to 

temperate forests with similar community compositions or maybe similar spectral 

combinations. Moreover, this approach can be widely used over a variety of taxa and to 

compare VI value differences on breakpoints and SOS and EOS.
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8. Conclusions 

8.1	Major	conclusions	
 This study set out to build a set of unique phenological progression models for 

individual tree species as well as for the community as a whole using a range of 

parameters pertaining to temperature, moisture, light, and wind conditions. The results of 

the statistical analysis showed that, of all the meteorological and environmental 

parameters tested, temperature was consistently the most influential factor driving both 

spring and autumn phenological progression. These models have the potential to be 

adapted to examine future phenological changes by incorporating temperature projections 

for a range of climate scenarios, as well as to be applied to other study areas at local, 

regional, and continental scales. In addition, there is also the possibility for phenological 

progression models to be integrated into carbon cycle models and climate models, to help 

establish not only the start and end of growing seasons but also define the critical 

phenophases in between. 

Autumn phenology is equally as important as spring phenology in determining the 

length of the growing season, which is a critical parameter in global and regional carbon 

cycle modeling and climate simulation. However, autumn phenology is generally much 

less observed and studied. This study is the first of its kind to conduct an intensive 

autumn phenological observation campaign in a temperate deciduous woodlot, over six 

consecutive years. The results of statistical analysis show that accumulated chilling 

degree days (ACDD) and day length are crucial factors influencing autumn phenology, so 

it was used to build phenological progression models for each observed tree species and 
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the plant community as a whole to predict the occurrence of future autumn phenological 

phases. 

Similarly, the relationship between spring phenology and its possible driving 

climate drivers was also examined. The results are to some extent consistent with past 

studies, showing that temperature is the critical factor affecting the timing of some 

specific spring phenophases (such as first leafing, first flowering); this study showed that 

temperature (especially the accumulated growing degree-days) is the most important 

factor driving the development of plant phenology. The spring phenological progression 

models simulate spring phenological development very well, always having better 

predictability than the autumn models. 

Two dominant species (basswood and white ash) showed significant spatial 

patterns. In spring, temperature gradients represented by latitude and the edge distance 

controlled spatial variations of phenology. In comparison, during autumn, temperature 

gradients represented by longitude dominated the spatial variations of phenology. These 

spatial patterns may be a consequence of air temperature gradients produced by the 

uneven distribution of features in the urban surroundings, especially buildings of different 

heights and types, indicating that local urban settings can significantly affect phenology. 

 By comparing ground visual community phenology with composite MODIS VI 

matrices, the results confirmed that both EVI and NDVI can detect vegetation dynamics 

from satellite, but showed that EVI can provide better ground phenological information 

than NDVI for both the spring and autumn seasons. From this initial analysis, it appears 

that the gaps between remote sensing data and ground visual phenology can be narrowed 



www.manaraa.com

155 

 

 

 

and the biological meaning of satellite data can be better determined. Moreover, ground 

validation over taxa should be done step by step to achieve more accurate information for 

paired VI /ground visual phenology in different biomes.    

8.2	Remaining	issues	and	recommendations	
 Limitations and challenges cannot be avoided in any scientific study, but these 

remaining issues often can inspire additional opportunities and lead to future discoveries.  

8.2.1	Field	observations	

 Although much observational effort (six years’ observations) has been put into 

this initial study, phenology has an annual cycle, and long-term (ideally more than ten 

years) data series are needed to more fully understand the responses of vegetation to 

climate change. This study employed spring and autumn phenological observation 

protocols, which are effective for tracking the complete development of phenology 

throughout these seasons, but it is a relatively time consuming process. Spatially 

intensive observations can provide more detailed phenological profiles for individual 

species as well as the community as a whole, but again this process is quite time 

consuming, so the areas observed directly must be limited.  

This study site has many advantages, including its potential to be a long-term 

intensive US phenological observation site. In addition, its easily accessible location on-

campus makes for low resource input costs in terms of travel and accommodation. Since 

the phenological observations can be combined with undergraduate student education, 

undergraduates with an interest can be recruited to conduct observations. A near-ground 

camera was deployed in spring 2013, as part of the PhenoCam network, to take hourly 
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daytime RGB and near infrared images of the entire site, which can provide a whole 

canopy phenological profile with high temporal resolution. Continued ground 

observations with these camera images will provide a long-term data set for future 

phenologists to work with, and will contribute to the growing number of data sets in the 

USA. 

8.2.2	Model	validation	

 Accurate phenological models representative of one site are not always 

transferrable to other sites (Richardson et al., 2006), so, model validation should be used 

to verify the model performance retrospectively or predictively at the same site or in 

different sites. Six years of phenological data were employed to build the phenological 

progression models in this study. These models examine how accumulated growing 

degree days and accumulated chilling degree days influence the development of spring 

and autumn phenology, respectively. After a longer data set is achieved, it would be 

useful to divide the data set into two parts with one part being used to build the model 

and the second part being used to validate the model.  

8.2.3	Retrospective	modeling	

In this study there are only six years of observational data for autumn and five 

years of observational data for spring. Phenological observation data alone are not 

enough to evaluate the possible impacts of climate change on spring and autumn 

phenology in Downer Woods. Since the comparison between temperatures in Downer 

Woods and at the Milwaukee airport weather station showed little differences, 

temperatures at Milwaukee airport, which go as far back as 1948, can be employed to 
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retrospectively model spring and autumn phenology of dominant species and the 

community as a whole in Downer Woods. With such long-term data, potential impacts of 

climate change could be analyzed and compared with other studies. 

8.2.4	Basswood	modeling	

Basswood is a common and widely distributed deciduous tree species throughout 

eastern and central North America. The USA National Phenology Network (USA-NPN) 

has collected nationwide phenological data of basswood acquired by citizen scientists 

since 2009. Combined with detailed basswood phenological data at Downer Woods and 

Park Falls, the current model could be extended to build a broader basswood 

phenological model to simulate phenology across the eastern and central USA.  
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Appendix 

Appendix 1: The list for observed trees in Downer Woods 

Site # Observed Tree # Observed Species Comments 

1 1 White Ash   

1 2 Hophornbeam   

1 3 Basswood   

1 4 Boxelder   

3 1 White Oak   

3 2 Basswood   

3 3 Basswood   

3 4 Boxelder   

5 1 White Ash   

5 2 Basswood   

5 3 White Ash   

5 4 White Ash   

7 1 White Oak   

7 2 Basswood   

7 3 White Ash   

7 4 Basswood   

9 1 Basswood   

9 2 White Ash   

9 3 Basswood   

9 4 White Ash   

11 1 Basswood 

HOBO 774E
11 2 Basswood 

11 3 White Ash 

11 4 Red Oak 

13 1 Hawthorn   

13 2 White Ash   

13 3 Basswood   

13 4 White Ash   

15 1 White Ash   

15 2 White Ash   

15 3 Basswood   

15 4 Basswood   

17 1 White Ash   

17 2 White Ash   

17 3 White Ash   

17 4 Basswood   
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19 1 White Oak   

19 2 Basswood   

19 3 Basswood   

19 4 White Ash   

21 1 Basswood   

21 2 Basswood   

21 3 White Ash   

21 4 Basswood   

23 1 White Oak 

HOBO 773E
23 2 Red Oak 

23 3 Basswood 

23 4 Basswood 

25 1 Basswood   

25 2 Basswood   

25 3 White Oak   

25 4 White Oak   

27 1 White Ash   

27 2 Boxelder   
27 3 White Ash   

27 4 Boxelder   

29 1 White Ash   

29 2 Basswood   

29 3 Basswood   

29 4 White Ash   

31 1 Basswood   

31 2 Basswood   

31 3 White Ash   

31 4 White Ash   

33 1 Red Oak   

33 2 White Ash   

33 3 Basswood   

33 4 White Ash   

35 1 Basswood 

HOBO 701 
35 2 White Ash 

35 3 White Ash 

35 4 Basswood 

38 1 White Ash   

38 2 Red Oak   

38 3 White Ash   

38 4 White Ash   

40 1 White Ash   
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40 2 White Ash   

40 3 White Ash   

40 4 White Ash   

42 1 Basswood   

42 2 White Ash   

42 3 White Ash   

42 4 Basswood   

43 1 White Oak   

43 2 Basswood   

43 3 White Ash   

43 4 Hawthorn   

45 1 Basswood 

HOBO 700 
45 2 White Ash 

45 3 Basswood 

45 4 Basswood 

47 1 Basswood   

47 2 White Ash   

47 3 Basswood   

47 4 White Ash   

49 1 White Ash   

49 2 White Ash   

49 3 Boxelder   

49 4 White Ash   

51 1 Basswood   

51 2 Basswood   

51 3 Basswood   

51 4 White Ash   

56 1 White Ash   

56 2 Basswood   

56 3 White Oak   

56 4 Basswood   



www.manaraa.com

171 

 

 

 

Acknowledgements 

Writing a dissertation is like climbing a mountain; knowledge, courage, and 

persistence are essential on this long journey. I am very grateful to the many people who 

guided me, helped me, and encouraged me along this expedition. Without their 

unflagging support, this dissertation would not have been possible.  

My deepest thanks go to my advisor Professor Mark D. Schwartz, who has not 

only served as an excellent mentor but also as a good friend. His experience and expertise 

in phenological research, his highly disciplined approach together with his generous 

personality have had a lasting impact on both my research and personal life. His kindness, 

patience, and encouragement both inspired and motivated me throughout my PhD. Our 

regular meetings were always inspiring and helpful. And I will particularly remember the 

wonderful Thanksgiving Dinners I shared with him and his family.  

I sincerely appreciate all Dr. Alison C. Donnelly’s efforts in helping me complete 

my dissertation during the past year and a half. She has read through and edited every 

chapter of my dissertation and gave me very insightful suggestions and comments. I 

learned a lot from her talent in writing English and her expertise in phenology. Her sense 

of humor also relieved me from pressure and made me more confident of my research. I 

am grateful to her not just for her invaluable help, but for her friendship, which I have 

come to cherish. 

I am also grateful to my other committee members for their valuable help, 

suggestions, and encouragement. Professor Changshan Wu was always willing to discuss 

my research and provide advice and help on everything from modeling to living in the 

US. The dumpling parties at his home with his family and friends were always 

particularly enjoyable moments while living abroad. Professor Michael J. Day greatly 

impressed me by his meticulous editing, attention to the tiniest detail and his precise turn 

of phrase. I learned a lot from his systematic approach to research and writing. Professor 

Glen G. Fredlund helped me gain an understanding of the physiology and ecosystems of 

Downer Woods, and he also drove me to the UWM Field Station to meet with Dr. 

Gretchen Meyer. Dr. Gretchen Meyer helped me to identify each sample tree in Downer 



www.manaraa.com

172 

 

 

 

Woods and provided me with a working knowledge of the vegetation and ecosystem of 

the woods.  

I also appreciate other faculty members, fellow graduate students, and staff in the 

Department of Geography at the University of Wisconsin-Milwaukee, who supported and 

helped me during my time in Milwaukee. Professor Hyejin Yoon from our own 

Department and Linda Walker from the Career Development Center always shared their 

time with me and supported me. I would like to thank my fellow phenology graduate 

students, Liang Liang, Tingting Zhao, Lingling Liu, Jonathan Hanes, and Isaac Park, who 

were always willing to discuss data issues and much more. Our discussions and chatting 

were always fun and inspiring. I am very fortunate to have been surrounded by caring 

friends through this journey, Qinhua Zhang, Zhenjun Li, Lu Chen, Runmin Yu, Hui Xiao, 

Ningning Wang, Nan Zhang, Qing Zhang, Qing Liu, Gong Zhang, Deng Ding, Miao Li, 

Adam Shidler, Allie Li, Stephen Mauel, Barron Orr, Yixuan Zhang, Chengbin Deng, Ihui 

Lin, Hong Zhuo, Wei Xu, Wei Huang, Haijiang Liu, Feng Pan, Yang Song, Yingbin 

Deng, Nicholas Papakis, and many others in Milwaukee and in the US who always 

shared their invaluable friendship and unconditional support.    

My final thanks go to my family, especially my father Mugen Yu, my mother 

Xianmei Deng, and my grandparents, and to Ningfang Dong, Lixia Yue, Chang Liu, 

Wenliang Li, Min Qiu, and Yunlong Sun, and also to my master’s advisor Professor 

Xiaoqiu Chen. They are my family, best friends and closest advisors, supporting my 

every step with patience, humor, and understanding. 



www.manaraa.com

173 

 

 

 

Curriculum Vitae 

EDUCATION           
Ph.D. in Geography, University of Wisconsin-Milwaukee, 2013 
     Dissertation: Examining Spring and Autumn Phenology in a Temperate Deciduous Urban 
Woodlot 

Advisor: Professor Mark D. Schwartz 
 

M.S. in Geography, Peking University, P. R. China, 2005 
    Thesis: Spatial and Temporal Variation of Phenological Seasons in Deciduous Broad-leaved Forest 
Region of the Warm Temperate Zone in China 

Advisor: Professor Xiaoqiu Chen 
 

B.S. in Geography, Lanzhou University, P. R. China, 2001 

RESEARCH INTERESTS 
Ecosystem modeling, climate change, and human impacts on the environment 
Ecological applications of remote sensing and GIS 
Spring and autumn vegetation phenology, and remote sensing phenology 
Urban ecology and urban phenology 

PROFESSIONAL EXPERIENCE 
GIS ASSISTANT 
American Geographical Society Library, University of Wisconsin-Milwaukee        09/2012- current 
 Processed digital data requests, including GIS data, aerial photos and remote sensing data, and 

census data 
 

PROJECT ASSISTANT 
Department of Geography, University of Wisconsin-Milwaukee                            08/2007-05/2012    
 Conducted intensive phenological monitoring in a temperate deciduous urban woodlot 
 Validated Spring Index for a total of 646 meteorological sites across the contiguous United States  
 Collected climatic and phenological data 
 Served for the USA National Phenological Network 
 Worked at the American Geographical Society Library (01/2011-05/2011, 09/2011-12/2011) 
 Served as the Public Relations assistant in the Department of Geography (09/2010-12/2010) 
 Edited the 2011 and 2012 Newsletters of the Climate Specialty Group in the Association of 

American Geographers, and the 2011 and 2012 Wisconsin Phenological Society Newsletters 
 
RESEARCH ASSISTANT 
College of Environmental Sciences, Peking University                                           02/2003-07/2006   
 Analyzed the phenological seasons and growing seasons in deciduous broad-leaved forest region 

of the warm temperate zone in China 
 Assisted in analyzing the growing season and climatic driving forces in temperate Eastern China 

(National Natural Science Foundation of China) 
 Participated in the field study on phenological growing season and net primary production 

(NPP) of Nei Mongol Steppe in China (National Natural Science Foundation of China) 
 Accomplished one section of The Ecological Planning of Nan’ao Town, Shenzhen, Guangdong 

Province and one section of The Ecological Planning of Bao’an District, Shenzhen, Guangdong 
Province 



www.manaraa.com

174 

 

 

 

PEER-REVIEWED PUBLICATIONS  
Chen XQ, Yu R (2007). Spatial and Temporal Variations of the Vegetation Growing Season in 
Warm-temperate Eastern China during 1982 to 1999. Acta Geographica Sinica (in Chinese), 62: 41-51. 
Chen XQ, Hu B, Yu R (2007). Spatial Extrapolation of the Vegetation Growing Season in 
Temperate Eastern China. Acta Ecologica Sinica (in Chinese), 27: 0065-0074.  
Chen XQ, Li HM, Hu B, Yu R (2007). Boden- und Satellitengestuetzte Erkennung der 
Phaenologischen Vegetationsperiode in der Gemaessigten Klimaregion Ostchinas. Promet (in German), 
33(1/2): 46-51. 
Chen XQ, Hu B, Yu R (2005). Spatial and Temporal Variation of Phenological Growing Season and 
Climate Change Impacts in Temperate Eastern China. Global Change Biology, 11: 1118-1130. 
 
Yu R, Schwartz MD (in preparation). Tracking Spring and Autumn Phenological Responses to 
Urban Microclimate Variations.  

COMPUTER SKILLS 
Proficient: ArcGIS, ERDAS IMAGINE, MATLAB, ENVI & IDL 
Familiar: SPSS, Photoshop, SAS (Certified Base Programmer for SAS 9), IDRISI 
Basic: R, Python, C++, CorelDRAW 

FIELD WORK EXPERIENCE 

 Spring and autumn phenological observations (4 days/week) (09/2007-05/2012) 
 Deployment of temperature HOBOs and Light Sensors (09/2007-05/2012) 
 Conducted the general survey and the measurement of photosynthetic rates in Nei Mongol 

Steppe in China (06/2005-07/2005) 
 Conducted the general survey and the interview for The Ecological Planning of Nan’ao Town 

and Bao’an District (11/2003-12/2003) 

REMOTE SENSING DATA WORK EXPERIENCE 
MODIS NDVI and EVI, AVHRR NDVI, Landsat TM/ETM, SPOT 

WORKSHOPS 

2010  3rd USA National Phenology Network Annual Research Coordination Network Meeting 
(invited participant) 
2008  2nd USA National Phenology Network Annual Research Coordination Network Meeting 
(invited participant) 
2007  1st USA National Phenology Network Annual Research Coordination Network Meeting 
(invited participant) 

CONFERENCE PRESENTATIONS 
2013  Yu R and Schwartz MD. “Examining spring and autumn phenological in a temperate 
deciduous urban woodlot”. 109th Annual Meeting of Association of American Geographers, Los 
Angeles. 
2012  Yu R and Schwartz MD. “Spring and autumn phenological study in an urban woodlot – Part 
2”. 108th Annual Meeting of Association of American Geographers, New York. 
2011  Yu R and Schwartz MD. “Tracking Spring and Autumn Phenological Responses to 
Microclimate Variations in an Urban Setting”. 107th Annual Meeting of Association of American 
Geographers, Seattle, WA.  



www.manaraa.com

175 

 

 

 

2008  Yu R and Schwartz MD. “Intensive Phenological Monitoring in an Urban Woodlot”. 104th 
Annual Meeting of Association of American Geographers, Boston, MA.  
2008  Yu R and Schwartz MD. “A Preliminary Phenology Study in an Urban Woodlot” (poster). 93rd 
Ecological Society of America Annual Meeting, Milwaukee, WI.  

FELLOWSHIP, AWARDS, AND HONORS 
2013              Mary Jo Read Travel Scholarship, Dept. of Geography, University of Wisconsin – 
Milwaukee 
2012              Mary Jo Read Travel Scholarship, Dept. of Geography, University of Wisconsin – 
Milwaukee   
2011              Mary Jo Read Travel Scholarship, Dept. of Geography, University of  Wisconsin – 
Milwaukee   
2008              Mary Jo Read Travel Scholarship, Dept. of Geography, University of  Wisconsin – 
Milwaukee   
2006-2007     Mary Jo Read Fellowship, Dept. of Geography, University of  Wisconsin – 
Milwaukee 
1998-2000     University Excellence Scholarship, Lanzhou University, P. R. China  
1997-1998     The Freshman Scholarship, Lanzhou University, P. R. China  

PROFESSIONAL SOCIETIES 
2008-present   Member, Association of American Geographers 
2008-present   Member, USA National Phenology Network 
2009-present   Member, International Society of Biometeorology 
2008                Member, Ecological Society of America 
 
 


	University of Wisconsin Milwaukee
	UWM Digital Commons
	12-1-2013

	Examining Spring and Autumn Phenology in a Temperate Deciduous Urban Woodlot
	Rong Yu
	Recommended Citation


	Microsoft Word - Dissertation_Rong_Draft_v9_Online.docx

